生成代码SVM 分类模型 搭建并创建支持向量机模型实现玻璃等级划分问题.4)PCA 降维 n_components=0.999 (5)建立 SVM 分类模型,并输出预测结果 (6)打印出分类报告,评价分类模型性能 (7)使用 metrics 参数评估分类模型 (8)绘制 ROC 曲线评价分类模型

时间: 2023-12-27 11:02:24 浏览: 32
以下是使用Python中的sklearn库来实现SVM分类模型的代码: ```python import pandas as pd from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.model_selection import train_test_split from sklearn.svm import SVC from sklearn.metrics import classification_report, roc_curve, auc # 读取数据集 data = pd.read_csv('glass.csv') # 划分自变量和因变量 X = data.iloc[:,:-1] y = data.iloc[:,-1] # 数据标准化 scaler = StandardScaler() X = scaler.fit_transform(X) # PCA降维 pca = PCA(n_components=0.999) X = pca.fit_transform(X) # 划分训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) # 建立SVM分类模型 clf = SVC(kernel='linear', C=1.0, probability=True, random_state=0) clf.fit(X_train, y_train) # 输出预测结果 y_pred = clf.predict(X_test) # 打印分类报告 print(classification_report(y_test, y_pred)) # 评估分类模型性能 fpr, tpr, thresholds = roc_curve(y_test, clf.predict_proba(X_test)[:,1]) roc_auc = auc(fpr, tpr) # 绘制ROC曲线 import matplotlib.pyplot as plt plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' % roc_auc) plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver operating characteristic') plt.legend(loc="lower right") plt.show() ``` 在上述代码中,我们首先读取了一个玻璃等级划分的数据集,然后将自变量和因变量分离。接着,我们对自变量进行标准化处理,然后使用PCA进行降维。然后,我们将数据集划分为训练集和测试集,并使用sklearn库中的SVC函数来构建SVM分类器。最后,我们使用classification_report函数打印出分类报告评估模型的性能,并使用roc_curve和auc函数来绘制ROC曲线评价分类模型。

相关推荐

优化这段代码 for j in n_components: estimator = PCA(n_components=j,random_state=42) pca_X_train = estimator.fit_transform(X_standard) pca_X_test = estimator.transform(X_standard_test) cvx = StratifiedKFold(n_splits=5, shuffle=True, random_state=42) cost = [-5, -3, -1, 1, 3, 5, 7, 9, 11, 13, 15] gam = [3, 1, -1, -3, -5, -7, -9, -11, -13, -15] parameters =[{'kernel': ['rbf'], 'C': [2x for x in cost],'gamma':[2x for x in gam]}] svc_grid_search=GridSearchCV(estimator=SVC(random_state=42), param_grid=parameters,cv=cvx,scoring=scoring,verbose=0) svc_grid_search.fit(pca_X_train, train_y) param_grid = {'penalty':['l1', 'l2'], "C":[0.00001,0.0001,0.001, 0.01, 0.1, 1, 10, 100, 1000], "solver":["newton-cg", "lbfgs","liblinear","sag","saga"] # "algorithm":['auto', 'ball_tree', 'kd_tree', 'brute'] } LR_grid = LogisticRegression(max_iter=1000, random_state=42) LR_grid_search = GridSearchCV(LR_grid, param_grid=param_grid, cv=cvx ,scoring=scoring,n_jobs=10,verbose=0) LR_grid_search.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] clf = StackingClassifier(estimators=estimators, final_estimator=LinearSVC(C=5, random_state=42),n_jobs=10,verbose=0) clf.fit(pca_X_train, train_y) estimators = [ ('lr', LR_grid_search.best_estimator_), ('svc', svc_grid_search.best_estimator_), ] param_grid = {'final_estimator':[LogisticRegression(C=0.00001),LogisticRegression(C=0.0001), LogisticRegression(C=0.001),LogisticRegression(C=0.01), LogisticRegression(C=0.1),LogisticRegression(C=1), LogisticRegression(C=10),LogisticRegression(C=100), LogisticRegression(C=1000)]} Stacking_grid =StackingClassifier(estimators=estimators,) Stacking_grid_search = GridSearchCV(Stacking_grid, param_grid=param_grid, cv=cvx, scoring=scoring,n_jobs=10,verbose=0) Stacking_grid_search.fit(pca_X_train, train_y) var = Stacking_grid_search.best_estimator_ train_pre_y = cross_val_predict(Stacking_grid_search.best_estimator_, pca_X_train,train_y, cv=cvx) train_res1=get_measures_gridloo(train_y,train_pre_y) test_pre_y = Stacking_grid_search.predict(pca_X_test) test_res1=get_measures_gridloo(test_y,test_pre_y) best_pca_train_aucs.append(train_res1.loc[:,"AUC"]) best_pca_test_aucs.append(test_res1.loc[:,"AUC"]) best_pca_train_scores.append(train_res1) best_pca_test_scores.append(test_res1) train_aucs.append(np.max(best_pca_train_aucs)) test_aucs.append(best_pca_test_aucs[np.argmax(best_pca_train_aucs)].item()) train_scores.append(best_pca_train_scores[np.argmax(best_pca_train_aucs)]) test_scores.append(best_pca_test_scores[np.argmax(best_pca_train_aucs)]) pca_comp.append(n_components[np.argmax(best_pca_train_aucs)]) print("n_components:") print(n_components[np.argmax(best_pca_train_aucs)])

import scipy.io as scio import numpy as np from sklearn.decomposition import PCA from sklearn import svm import matplotlib.pyplot as plt import random from sklearn.datasets import make_blobs test_data = scio.loadmat('D:\\python-text\\AllData.mat') train_data = scio.loadmat('D:\\python-text\\label.mat') print(test_data) print(train_data) data2 = np.concatenate((test_data['B021FFT0'], test_data['IR007FFT0']), axis=0) data3 = train_data['label'] print(data2) print(data3) # print(type(data3)) # print(data4) # print(type(data4)) data2 = data2.tolist() data2 = random.sample(data2, 200) data2 = np.array(data2) data3 = data3.tolist() data3 = random.sample(data3, 200) data3 = np.array(data3) # data4,data3= make_blobs(random_state=6) print(data2) print(data3) # print(type(data3)) # 创建一个高斯内核的支持向量机模型 clf = svm.SVC(kernel='rbf', C=1000) clf.fit(data2,data3.reshape(-1)) pca = PCA(n_components=2) # 加载PCA算法,设置降维后主成分数目为2 pca.fit(data2) # 对样本进行降维 data4 = pca.transform(data2) # 以散点图的形式把数据画出来 plt.scatter(data4[:, 0], data4[:, 1], c=data3,s=30, cmap=plt.cm.Paired) # 建立图像坐标 axis = plt.gca() xlim = axis.get_xlim() ylim = axis.get_ylim() # 生成两个等差数列 xx = np.linspace(xlim[0], xlim[1], 30) yy = np.linspace(ylim[0], ylim[1], 30) # print("xx:", xx) # print("yy:", yy) # 生成一个由xx和yy组成的网格 X, Y = np.meshgrid(xx, yy) # print("X:", X) # print("Y:", Y) # 将网格展平成一个二维数组xy xy = np.vstack([X.ravel(), Y.ravel()]).T Z = clf.decision_function(xy).reshape(X.shape) # 画出分界线 axis.contour(X, Y, Z, colors='k', levels=[-1, 0, 1], alpha=0.5, linestyles=['--', '-', '--']) axis.scatter(clf.support_vectors_[:, 0], clf.support_vectors_[:, 1], s=100,linewidth=1, facecolors='none') plt.show()修改一下错误

最新推荐

recommend-type

Python SVM(支持向量机)实现方法完整示例

主要介绍了Python SVM(支持向量机)实现方法,结合完整实例形式分析了基于Python实现向量机SVM算法的具体步骤与相关操作注意事项,需要的朋友可以参考下
recommend-type

关于支持向量机的SVM讲解ppt

之前的以此组会,老师让讲一下支持向量机SVM的基本知识,就做了一个ppt介绍。 里面主要软硬间隔,对偶相关的知识
recommend-type

模式识别(模型选择,SVM,分类器)作业解答+代码.docx

Adaboost算法的设计思想。从机器学习的角度简述模型选择的基本原则。...编程:从MNIST数据集中选择两类,对其进行SVM分类,可调用现有的SVM工具利用sklearn库进行svm训练MNIST数据集,准确率可以达到90%以上。
recommend-type

Python中支持向量机SVM的使用方法详解

主要为大家详细介绍了Python中支持向量机SVM的使用方法,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

机器学习怎么将excel转为csv文件

机器学习是一种利用计算机算法和统计数据的方法来训练计算机来进行自动学习的科学,无法直接将excel文件转为csv文件。但是可以使用Python编程语言来读取Excel文件内容并将其保存为CSV文件。您可以使用Pandas库来读取Excel文件,并使用to_csv()函数将其保存为CSV格式。以下是代码示例: ```python import pandas as pd # 读取 Excel 文件 excel_data = pd.read_excel('example.xlsx') # 将数据保存为 CSV 文件 excel_data.to_csv('example.csv', index=
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依