fif=[1,3,5,8,9] >>> sorted(fif,reverse=True) [9, 8, 5, 3, 1] >>> with open('第五题答案.txt','w')as fp: fp.write('最大值为:'+str(max(fif))+'\n') fp.write('最小值为:'+str(min(fif))+'\n') fp.write('和为:'+str(sum(fif))+'\n') fp.write('平均值为:'+str(sum(fif)/len(fif))+'\n')
时间: 2023-12-24 16:04:43 浏览: 95
这段代码是一个求列表fif的最大值、最小值、和、平均值,并将结果写入文件的示例代码。
代码首先定义了一个列表fif,然后使用sorted函数对其进行降序排序,结果为[9, 8, 5, 3, 1]。
接着,使用with语句打开文件'第五题答案.txt',并使用write函数将最大值、最小值、和、平均值写入文件中,代码如下:
```
with open('第五题答案.txt', 'w') as fp:
fp.write('最大值为:'+str(max(fif))+'\n')
fp.write('最小值为:'+str(min(fif))+'\n')
fp.write('和为:'+str(sum(fif))+'\n')
fp.write('平均值为:'+str(sum(fif)/len(fif))+'\n')
```
在这个示例代码中,使用了字符串拼接的方式将结果转换成字符串并写入文件中。
希望这个示例代码能够帮助你!
相关问题
#include<stdio.h> main() (char ch[127]; int letter=0,number=0,space=0,character=0; scanf("%c",ch); int i=0; while(ch[i]!='\e') fif((ch[i]>='A'&&ch[i】<='Z')||((ch[i]>='a'&&ch[i]<='z')))letter++; if(ch[i]>='0'&8ch[i]<='9') number++; if(ch[i]==' )space++; character++; i++; 上 printf("%d,%d,%d,%d\n",letter,number,space,character);
这段代码的功能是统计输入字符中的字母、数字、空格和其他字符的个数,并输出统计结果。但是,代码中存在一些语法错误,例如:
1.函数定义应该使用大括号,而不是小括号;
2.变量定义应该在函数开头处;
3.在while循环中,应该使用if语句而不是fif语句;
4.判断数字的条件应该使用&&而不是&;
5.在while循环中应该使用scanf("%c",&ch[i])而不是scanf("%c",ch);
6.程序应该在最后使用return 0结束。
正确的代码应该是这样的:
```c
#include <stdio.h>
int main() {
char ch[127];
int letter = 0, number = 0, space = 0, character = 0;
int i = 0;
scanf("%c", &ch[i]);
while (ch[i] != '\e') {
if ((ch[i] >= 'A' && ch[i] <= 'Z') || (ch[i] >= 'a' && ch[i] <= 'z')) {
letter++;
} else if (ch[i] >= '0' && ch[i] <= '9') {
number++;
} else if (ch[i] == ' ') {
space++;
} else {
character++;
}
i++;
scanf("%c", &ch[i]);
}
printf("%d,%d,%d,%d\n", letter, number, space, character);
return 0;
}
```
介绍一下这段代码的Depthwise卷积层def get_data4EEGNet(kernels, chans, samples): K.set_image_data_format('channels_last') data_path = '/Users/Administrator/Desktop/project 5-5-1/' raw_fname = data_path + 'concatenated.fif' event_fname = data_path + 'concatenated.fif' tmin, tmax = -0.5, 0.5 #event_id = dict(aud_l=769, aud_r=770, foot=771, tongue=772) raw = io.Raw(raw_fname, preload=True, verbose=False) raw.filter(2, None, method='iir') events, event_id = mne.events_from_annotations(raw, event_id={'769': 1, '770': 2,'770': 3, '771': 4}) #raw.info['bads'] = ['MEG 2443'] picks = mne.pick_types(raw.info, meg=False, eeg=True, stim=False, eog=False) epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=False, picks=picks, baseline=None, preload=True, verbose=False) labels = epochs.events[:, -1] print(len(labels)) print(len(epochs)) #epochs.plot(block=True) X = epochs.get_data() * 250 y = labels X_train = X[0:144,] Y_train = y[0:144] X_validate = X[144:216, ] Y_validate = y[144:216] X_test = X[216:, ] Y_test = y[216:] Y_train = np_utils.to_categorical(Y_train - 1) Y_validate = np_utils.to_categorical(Y_validate - 1) Y_test = np_utils.to_categorical(Y_test - 1) X_train = X_train.reshape(X_train.shape[0], chans, samples, kernels) X_validate = X_validate.reshape(X_validate.shape[0], chans, samples, kernels) X_test = X_test.reshape(X_test.shape[0], chans, samples, kernels) return X_train, X_validate, X_test, Y_train, Y_validate, Y_test kernels, chans, samples = 1, 3, 251 X_train, X_validate, X_test, Y_train, Y_validate, Y_test = get_data4EEGNet(kernels, chans, samples) model = EEGNet(nb_classes=3, Chans=chans, Samples=samples, dropoutRate=0.5, kernLength=32, F1=8, D=2, F2=16, dropoutType='Dropout') model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) checkpointer = ModelCheckpoint(filepath='/Users/XXX/baseline.h5', verbose=1, save_best_only=True) class_weights = {0: 1, 1: 1, 2: 1, 3: 1} fittedModel = model.fit(X_train, Y_train, batch_size=2, epochs=100, verbose=2, validation_data=(X_validate, Y_validate), callbacks=[checkpointer], class_weight=class_weights) probs = model.predict(X_test) preds = probs.argmax(axis=-1) acc = np.mean(preds == Y_test.argmax(axis=-1)) print("Classification accuracy: %f " % (acc))
这段代码是用于对EEG数据进行分类的。首先,它读取了一个数据集,将数据集分成训练集、验证集和测试集。然后,它使用EEGNet模型对数据进行训练和验证,并输出分类准确率。其中,EEGNet模型是一种针对EEG数据设计的卷积神经网络模型,它包括了深度可分离卷积层、批归一化层和Dense层。这个模型的输入是EEG信号,输出是分类结果。在训练过程中,该代码使用了dropout技术和class weight调节技术,以提高模型的鲁棒性和泛化性能。最后,该代码输出了测试集上的分类准确率。
阅读全文