Tcn多变量预测程序matlab
时间: 2023-09-02 17:08:40 浏览: 181
基于TCN时间卷积神经网络的多变量时间序列预测(Matlab完整源码和数据)
5星 · 资源好评率100%
Tcn是一种时空卷积网络,用于多变量时间序列预测,可以使用Matlab进行编程实现。以下是一个简单的Tcn多变量预测程序示例:
```matlab
% 导入数据
data = load("data.mat");
X_train = data.X_train;
Y_train = data.Y_train;
X_test = data.X_test;
Y_test = data.Y_test;
% 设定模型参数
input_size = size(X_train, 2);
output_size = size(Y_train, 2);
num_filters = 128;
filter_size = 3;
num_layers = 3;
dropout_rate = 0.5;
learning_rate = 0.001;
batch_size = 128;
num_epochs = 100;
% 定义TCN模型
model = tcnModel(input_size, output_size, num_filters, filter_size, num_layers, dropout_rate);
% 设定训练选项
options = trainingOptions('adam', ...
'InitialLearnRate', learning_rate, ...
'MiniBatchSize', batch_size, ...
'MaxEpochs', num_epochs, ...
'Verbose', true, ...
'Plots', 'training-progress');
% 训练模型
[model, trainInfo] = trainTcnModel(model, X_train, Y_train, options);
% 预测测试集结果
Y_pred = predictTcnModel(model, X_test);
% 计算测试集误差
rmse = sqrt(mean((Y_test - Y_pred).^2));
mae = mean(abs(Y_test - Y_pred));
disp("RMSE: " + rmse);
disp("MAE: " + mae);
```
这段代码中,首先导入数据,然后设定模型参数和训练选项。接着定义TCN模型,使用Adam优化器进行训练,并在训练过程中显示训练进度。训练完成后,使用训练好的模型对测试集进行预测,并计算测试集误差。最后输出RMSE和MAE两个评估指标。
阅读全文