已知z=2xy,求z的增量Z与x,y的增量X,Y的关系式

时间: 2024-04-27 19:21:02 浏览: 11
根据全微分公式,可以得到: dZ = (∂z/∂x) * dX + (∂z/∂y) * dY 其中,∂z/∂x = 2y,∂z/∂y = 2x。 将上述偏导数代入上述公式中,可以得到: dZ = 2y * dX + 2x * dY 即:dZ = 2xy * (dX/x + dY/y) 因此,z的增量Z与x,y的增量X,Y的关系式为:Z = 2xy * (X/x + Y/y)。
相关问题

Y=arccosy,求Z=X^2-2XY的概率密度函数

根据题意,我们需要求出Z=X^2-2XY的概率密度函数,其中Y=arccos(y)。 首先,我们考虑Y的取值范围。因为arccos(y)的取值范围是[0,π],所以Y的取值范围也是[0,π]。 接下来,我们使用变量替换法来求Z的概率密度函数。令U=X-Y和V=X,则X=(U+V)/2,Y=(V-U)/2。由此可得: Z = (U+V)^2/4 - 2UV/4 = U^2/4 + UV/2 + V^2/4 接下来,我们需要求出U和V的联合概率密度函数fUV(u,v),然后根据变量替换法求出Z的概率密度函数fZ(z)。 因为U=X-Y和V=X是线性变量关系,所以它们的联合概率密度函数可以通过求解其雅可比行列式来得到: fUV(u,v) = fXY((u+v)/2,(v-u)/2) * |J| 其中,fXY(x,y)是X和Y的概率密度函数,J是雅可比行列式,它的值为: J = |dx/du dx/dv| |dy/du dy/dv| = |-1/2 1/2 | |1/2 1/2 | 所以, |J| = |-1/2 1/2| = 1/2 接下来,我们需要求解fXY(x,y),它的概率密度函数为: fXY(x,y) = fX(x) * fY(y) 其中,X和Y是独立的随机变量,且X是一个标准正态分布,Y的概率密度函数为: fY(y) = f(arccos(y)) * |dy/dy'| 其中,f(arccos(y))是Y=arccos(y)的概率密度函数,|dy/dy'|是雅可比行列式,它的值为: |dy/dy'| = |-sin(arccos(y))| = |-√(1-y^2)| = √(1-y^2) 因此,Y的概率密度函数为: fY(y) = f(arccos(y)) * √(1-y^2) 将fX(x)和fY(y)代入fXY(x,y)中,可得: fXY(x,y) = (1/2π) * e^(-x^2/2) * f(arccos(y)) * √(1-y^2) 接下来,将fXY(x,y)和|J|代入fUV(u,v)中,可得: fUV(u,v) = (1/4π) * e^(-u^2/4-v^2/4+uv/2) * √(1-((v-u)/2)^2) 最后,我们使用变量替换法求出Z的概率密度函数fZ(z)。令z=u^2/4+uv/2+v^2/4,则: u = √(4z-v^2) - v v = V J = |du/dz du/dv| |dv/dz dv/dv| 我们可以通过计算J的逆矩阵来求出du/dz、du/dv、dv/dz和dv/dv的值。最终,我们得到: fZ(z) = (1/2π) * ∫(从0到π) e^(-u^2/4-v^2/4+uv/2) * √(1-((v-u)/2)^2) * |J| * dv 其中,|J|的值为1/2,dv的积分范围为0到π。将u和v代入上式,可得: fZ(z) = (1/4π) * ∫(从0到π) e^(-(u^2+2uv+v^2)/4) * √(4z-v^2) * dv 这个积分式可以通过换元法将其化简为高斯函数的形式,最终得到: fZ(z) = (1/2π√z) * ∫(从0到π) e^(-(v^2-2z)/4) * √(4z-v^2) * dv 令t=v/√(4z),则: fZ(z) = (1/8πz) * ∫(从0到√(4z)/2) e^(-t^2) * √(1-t^2) * dt 这个积分式可以通过换元法将其化简为高斯函数和伽马函数的形式,最终得到: fZ(z) = (1/8z^(3/2)) * (2-π/2*√(π) * erf(√z/2) - √(π) * e^(-z/4) * γ(3/2, z/4)) 其中,erf(x)是误差函数,γ(a,x)是不完全伽马函数。因此,Z的概率密度函数为: fZ(z) = (1/8z^(3/2)) * (2-π/2*√(π) * erf(√z/2) - √(π) * e^(-z/4) * γ(3/2, z/4)),其中z属于[0,∞)。

Z=X^2-2XY的概率密度函数

我犯了一个错误,我的回答中的Z的取值范围不正确,应该是Z的取值范围是[0,∞)。因为X^2>=0, -2XY<=0,所以Z=X^2-2XY>=0。 现在来回答你的问题:Z=X^2-2XY的概率密度函数。 首先,我们需要确定Z的取值范围是[0,∞)。 接下来,我们使用变量替换法来求Z的概率密度函数。令U=X-Y和V=X,则X=(U+V)/2,Y=(V-U)/2。由此可得: Z = (U+V)^2/4 - 2UV/4 = U^2/4 + UV/2 + V^2/4 接下来,我们需要求出U和V的联合概率密度函数fUV(u,v),然后根据变量替换法求出Z的概率密度函数fZ(z)。 因为U=X-Y和V=X是线性变量关系,所以它们的联合概率密度函数可以通过求解其雅可比行列式来得到: fUV(u,v) = fXY((u+v)/2,(v-u)/2) * |J| 其中,fXY(x,y)是X和Y的概率密度函数,J是雅可比行列式,它的值为: J = |dx/du dx/dv| |dy/du dy/dv| = |-1/2 1/2 | |1/2 1/2 | 所以, |J| = |-1/2 1/2| = 1/2 接下来,我们需要求解fXY(x,y),因为X和Y是独立的,所以: fXY(x,y) = fX(x) * fY(y) 根据题意可知,X和Y都是均值为0、方差为1的标准正态分布。因此: fX(x) = (1/√(2π)) * e^(-x^2/2) fY(y) = (1/√(2π)) * e^(-y^2/2) 代入上式,可得: fXY(x,y) = (1/2π) * e^(-x^2/2-y^2/2) 将fXY(x,y)和|J|代入fUV(u,v)中,可得: fUV(u,v) = (1/4π) * e^(-u^2/4-v^2/4+uv/2) 最后,我们使用变量替换法求出Z的概率密度函数fZ(z)。令z=u^2/4+uv/2+v^2/4,则: u = √(4z-v^2) - v v = V J = |du/dz du/dv| |dv/dz dv/dv| 我们可以通过计算J的逆矩阵来求出du/dz、du/dv、dv/dz和dv/dv的值。最终,我们得到: fZ(z) = (1/2π) * ∫(从负无穷到正无穷) e^(-u^2/4-v^2/4+uv/2) * |J| * dv 其中,|J|的值为1/2,dv的积分范围为负无穷到正无穷。将u和v代入上式,可得: fZ(z) = (1/4π) * ∫(从负无穷到正无穷) e^(-(u^2+2uv+v^2)/4) * √(4z-v^2) * dv 这个积分式可以通过换元法将其化简为高斯函数的形式,最终得到: fZ(z) = (1/2√(πz^3)) * e^(-z/4) 因此,Z的概率密度函数为: fZ(z) = (1/2√(πz^3)) * e^(-z/4),其中z属于[0,∞)。

相关推荐

最新推荐

recommend-type

增量式旋转编码器工作原理

增量式旋转编码器通过内部两个光敏接受管转化其角度码盘的时序和相位关系,得到其角度码盘角度位移量增加(正方向)或减少(负方向)。在接合数字电路特别是单片机后,增量式旋转编码器在角度测量和角速度测量较绝对...
recommend-type

UML类图与类的关系详解

其中关联又分为一般关联关系和聚合关系(Aggregation),合成关系(Composition)。下面我们结合实例理解这些关系。在画类图的时候,理清类和类之间的关系是重点。类的关系有泛化(Generalization)、实现(Realization)...
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】MATLAB用遗传算法改进粒子群GA-PSO算法

![MATLAB智能算法合集](https://static.fuxi.netease.com/fuxi-official/web/20221101/83f465753fd49c41536a5640367d4340.jpg) # 2.1 遗传算法的原理和实现 遗传算法(GA)是一种受生物进化过程启发的优化算法。它通过模拟自然选择和遗传机制来搜索最优解。 **2.1.1 遗传算法的编码和解码** 编码是将问题空间中的解表示为二进制字符串或其他数据结构的过程。解码是将编码的解转换为问题空间中的实际解的过程。常见的编码方法包括二进制编码、实数编码和树形编码。 **2.1.2 遗传算法的交叉和
recommend-type

openstack的20种接口有哪些

以下是OpenStack的20种API接口: 1. Identity (Keystone) API 2. Compute (Nova) API 3. Networking (Neutron) API 4. Block Storage (Cinder) API 5. Object Storage (Swift) API 6. Image (Glance) API 7. Telemetry (Ceilometer) API 8. Orchestration (Heat) API 9. Database (Trove) API 10. Bare Metal (Ironic) API 11. DNS
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN

![【实战演练】时间序列预测用于个体家庭功率预测_ARIMA, xgboost, RNN](https://img-blog.csdnimg.cn/img_convert/5587b4ec6abfc40c76db14fbef6280db.jpeg) # 1. 时间序列预测简介** 时间序列预测是一种预测未来值的技术,其基于历史数据中的时间依赖关系。它广泛应用于各种领域,例如经济、金融、能源和医疗保健。时间序列预测模型旨在捕捉数据中的模式和趋势,并使用这些信息来预测未来的值。 # 2. 时间序列预测方法 时间序列预测方法是利用历史数据来预测未来趋势或值的统计技术。在时间序列预测中,有许多不
recommend-type

怎么在集群安装安装hbase

您好,关于如何在集群上安装HBase,步骤大致如下: 1. 在HBase官网上下载最新版本的HBase,并解压到需要安装的目录下; 2. 配置HBase的环境变量:将HBase目录的bin子目录加入到PATH环境变量中; 3. 修改HBase配置文件:在HBase目录下的conf子目录中找到hbase-site.xml文件,并进行相应的配置,如指定HBase的Zookeeper节点等; 4. 启动HBase:使用HBase的bin目录下的start-hbase.sh脚本启动HBase; 5. 验证HBase是否正常运行:使用HBase自带的shell命令行工具操作HBase。 注意:以上步