matlab递归特征消除
时间: 2023-10-16 15:26:12 浏览: 485
digui.rar_recursive features_svm特征选择_特征选择 SVM_特征选择matlab_递归特征消除
5星 · 资源好评率100%
递归特征消除 (Recursive Feature Elimination, RFE) 是一种特征选择方法,它通过递归地构建模型并删除最不重要的特征来减少特征数量,直到达到预设的特征数量。MATLAB 中可以使用 `fitrlinear` 函数结合 `sequentialfs` 函数实现 RFE。
具体步骤如下:
1. 使用 `fitrlinear` 函数构建线性模型,并选择合适的正则化方法和参数。
2. 使用 `sequentialfs` 函数进行特征选择。在每一步中,该函数将选择一个特征并计算模型的性能。然后,它将删除最不重要的特征并继续递归地进行特征选择,直到达到预设的特征数量。
下面是一个示例代码:
```matlab
% 加载数据
load fisheriris
X = meas;
Y = species;
% 构建线性模型
mdl = fitrlinear(X,Y,'Regularization','ridge','Lambda',0.1);
% 递归特征消除
opts = statset('display','iter');
[fs,history] = sequentialfs(@critfun,X,Y,'options',opts);
% 显示结果
disp('Selected features:')
disp(fs)
disp('History of feature selection:')
disp(history)
% 评估模型性能
function mse = critfun(Xtrain,Ytrain,Xtest,Ytest)
mdl = fitrlinear(Xtrain,Ytrain,'Regularization','ridge','Lambda',0.1);
Ypred = predict(mdl,Xtest);
mse = mean((Ytest - Ypred).^2);
end
```
在这个示例中,我们使用了 iris 数据集,并构建了一个岭回归模型。然后,我们使用 `sequentialfs` 函数进行特征选择,并指定了一个评估函数 `critfun`,该函数计算模型在测试集上的均方误差。最后,我们显示了选择的特征和特征选择的历史记录。
阅读全文