分析这个代码class OhemCrossEntropy(nn.Module): def __init__(self, ignore_label=-1, thres=0.7, min_kept=100000, weight=None): super(OhemCrossEntropy, self).__init__() self.thresh = thres self.min_kept = max(1, min_kept) self.ignore_label = ignore_label self.criterion = nn.CrossEntropyLoss( weight=weight, ignore_index=ignore_label, reduction='none' ) def _ce_forward(self, score, target): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) loss = self.criterion(score, target) return loss def _ohem_forward(self, score, target, **kwargs): ph, pw = score.size(2), score.size(3) h, w = target.size(1), target.size(2) if ph != h or pw != w: score = F.interpolate(input=score, size=( h, w), mode='bilinear', align_corners=config.MODEL.ALIGN_CORNERS) pred = F.softmax(score, dim=1) pixel_losses = self.criterion(score, target).contiguous().view(-1) mask = target.contiguous().view(-1) != self.ignore_label tmp_target = target.clone() tmp_target[tmp_target == self.ignore_label] = 0 pred = pred.gather(1, tmp_target.unsqueeze(1)) pred, ind = pred.contiguous().view(-1,)[mask].contiguous().sort() min_value = pred[min(self.min_kept, pred.numel() - 1)] threshold = max(min_value, self.thresh) pixel_losses = pixel_losses[mask][ind] pixel_losses = pixel_losses[pred < threshold] return pixel_losses.mean() def forward(self, score, target): if config.MODEL.NUM_OUTPUTS == 1: score = [score] weights = config.LOSS.BALANCE_WEIGHTS assert len(weights) == len(score) functions = [self._ce_forward] * \ (len(weights) - 1) + [self._ohem_forward] return sum([ w * func(x, target) for (w, x, func) in zip(weights, score, functions) ])
时间: 2023-06-10 14:03:24 浏览: 236
这是一个实现了OHEM(Online Hard Example Mining)的交叉熵损失函数,用于解决深度学习中存在难样本或噪声样本导致训练效果不好的问题。其中,thresh表示像素的softmax预测概率阈值,小于该阈值的像素被认为是难样本;min_kept表示每张图中保留的难样本最小数量;ignore_label表示忽略的标签;weight表示权重。_ce_forward函数实现了普通的交叉熵损失的计算;_ohem_forward函数实现了OHEM的计算。在forward函数中,对于有多个输出的模型,采用了权重平衡的方式进行计算。
相关问题
class NormalLoss(nn.Module): def __init__(self,ignore_lb=255, *args, **kwargs): super( NormalLoss, self).__init__() self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') def forward(self, logits, labels): N, C, H, W = logits.size() loss = self.criteria(logits, labels) return torch.mean(loss) class Fusionloss(nn.Module): def __init__(self): super(Fusionloss, self).__init__() self.sobelconv=Sobelxy() def forward(self,image_vis,image_ir,labels,generate_img,i): image_y=image_vis[:,:1,:,:] x_in_max=torch.max(image_y,image_ir) loss_in=F.l1_loss(x_in_max,generate_img) y_grad=self.sobelconv(image_y) ir_grad=self.sobelconv(image_ir) generate_img_grad=self.sobelconv(generate_img) x_grad_joint=torch.max(y_grad,ir_grad) loss_grad=F.l1_loss(x_grad_joint,generate_img_grad) loss_total=loss_in+10*loss_grad return loss_total,loss_in,loss_grad
这段代码定义了两个损失函数类:NormalLoss和Floss。
NormalLoss是一个普通的损失函数类,继承自nn.Module。构造函数中包含了一个可选参数ignore_lb,默认值为255。在构造函数中,使用nn.CrossEntropyLoss作为损失函数的标准,设置ignore_index为ignore_lb,reduction为'none',这样可以得到每个样本的损失值。在前向传播方法forward中,计算logits和labels之间的交叉熵损失loss,并取平均值返回。
Fusionloss是一个融合损失函数类,继承自nn.Module。构造函数中初始化了一个Sobelxy模块(未给出代码),该模块用于计算图像的梯度。在前向传播方法forward中,接受image_vis、image_ir、labels、generate_img和i作为输入。首先从image_vis中提取灰度通道image_y,然后计算image_y和image_ir的最大值x_in_max,并使用F.l1_loss计算其与generate_img之间的L1损失loss_in。接下来,分别计算image_y、image_ir和generate_img的梯度,并取最大值得到x_grad_joint。再次使用F.l1_loss计算x_grad_joint和generate_img_grad之间的L1损失loss_grad。最后,将loss_in和10倍的loss_grad相加得到总的损失loss_total,并返回。
整体来看,这段代码定义了两个损失函数类,NormalLoss用于计算交叉熵损失,Fusionloss用于计算融合损失。
class SoftmaxFocalLoss(nn.Module): def __init__(self, gamma, ignore_lb=255, *args, **kwargs): super(FocalLoss, self).__init__() self.gamma = gamma self.nll = nn.NLLLoss(ignore_index=ignore_lb) def forward(self, logits, labels): scores = F.softmax(logits, dim=1) factor = torch.pow(1.-scores, self.gamma) log_score = F.log_softmax(logits, dim=1) log_score = factor * log_score loss = self.nll(log_score, labels) return loss
这是一个名为SoftmaxFocalLoss的自定义损失函数类,它继承自nn.Module类。构造函数中包含了参数gamma和ignore_lb,以及其他的可选参数。gamma是Focal Loss中的一个超参数,ignore_lb是一个指定忽略标签的索引值,默认为255。
该损失函数的前向传播方法forward接受logits和labels作为输入,并且计算出损失值。首先,通过softmax函数计算出logits的概率分布scores。然后,计算出权重因子factor,它是(1-scores)^gamma的幂次方。接下来,对logits应用log_softmax函数得到log_score,并且与factor相乘。最后,使用NLLLoss函数计算log_score和labels之间的负对数似然损失loss,并返回该损失值。
这个损失函数的目的是在多分类问题中减小易分类样本的权重,以便更加关注困难样本的训练。
阅读全文