def return_values(): import pandas as pd import numpy as np from sklearn.neural_network import MLPRegressor as MP data = pd.read_excel('4.xlsx') x_train=data.iloc[:,1:4] y_train=data.iloc[:,4:6] clf = MP(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=8, random_state=1) clf.fit(x_train, y_train); a=np.array([[73.39,3.9635,0.9880],[75.55,4.0975,1.0268]]) Y=clf.predict(a) return Y 解释代码
时间: 2023-12-04 16:06:03 浏览: 81
python数据分析与可视化 import pandas as pd import numpy as np import m
这段代码主要是进行神经网络回归预测,以下是代码的详细解释:
1. 导入需要的库:
```python
import pandas as pd
import numpy as np
from sklearn.neural_network import MLPRegressor as MP
```
2. 读取Excel文件数据:
```python
data = pd.read_excel('4.xlsx')
```
3. 提取训练数据集的特征和标签:
```python
x_train=data.iloc[:,1:4] #提取第2-4列作为特征
y_train=data.iloc[:,4:6] #提取第5-6列作为标签
```
4. 初始化神经网络模型:
```python
clf = MP(solver='lbfgs', alpha=1e-5,hidden_layer_sizes=8, random_state=1)
```
其中,`solver`是优化器,`alpha`是L2正则化系数,`hidden_layer_sizes`是隐藏层神经元个数,`random_state`是随机种子,用于保证每次运行结果一致。
5. 训练神经网络模型:
```python
clf.fit(x_train, y_train)
```
6. 预测新数据:
```python
a=np.array([[73.39,3.9635,0.9880],[75.55,4.0975,1.0268]])
Y=clf.predict(a)
```
其中,`a`是待预测的新数据,`Y`是预测结果。
7. 返回预测结果:
```python
return Y
```
阅读全文