matlab 输入层代码
时间: 2023-07-10 17:16:00 浏览: 97
以下是一个使用 MATLAB 创建神经网络模型的示例代码,其中包括一个输入层:
```
% 创建一个具有 10 个输入神经元、1 个隐藏层和 1 个输出层的神经网络模型
num_inputs = 10;
num_hidden = 5;
num_outputs = 1;
% 定义输入层
input_layer = inputLayer(num_inputs);
% 定义隐藏层
hidden_layer = fullyConnectedLayer(num_hidden);
hidden_layer.ActivationFunction = 'relu';
% 定义输出层
output_layer = regressionLayer;
% 将层组合成一个神经网络模型
layers = [input_layer
hidden_layer
output_layer];
% 定义神经网络模型的选项
options = trainingOptions('adam', ...
'MaxEpochs', 100, ...
'MiniBatchSize', 32, ...
'Verbose', false);
% 使用随机数据训练神经网络模型
X = rand(num_inputs, 100);
Y = rand(num_outputs, 100);
net = trainNetwork(X, Y, layers, options);
```
在此示例中,我们使用 `inputLayer` 函数定义了一个具有 10 个输入神经元的输入层。然后,我们定义了一个具有 5 个神经元的隐藏层和一个具有 1 个神经元的输出层,并将这些层组合成一个完整的神经网络模型。最后,我们使用 `trainNetwork` 函数训练了神经网络模型。
阅读全文
相关推荐
















