基于FPGA卷积神经网络的宿舍人脸检测

时间: 2023-05-28 12:02:25 浏览: 45
概述 本项目旨在利用FPGA实现基于卷积神经网络(Convolutional Neural Network,CNN)的宿舍人脸检测系统。该系统能够实时地检测宿舍内的人脸,并将检测到的结果通过视频输出。 技术介绍 卷积神经网络是一种深度学习模型,它能够对图像、语音等数据进行分类、识别、检测等任务。与传统的神经网络相比,卷积神经网络更加适合处理图像数据,因为它能够保留图像的局部特征。 在本项目中,使用了一个经典的CNN模型:YOLO(You Only Look Once)。YOLO模型采用了一种先验框(Prior Boxes)的方法,这种方法能够快速地检测出图像中的目标对象。与传统的目标检测算法相比,YOLO模型的速度更快,但是准确率略低。 为了实现该系统,我们需要先将YOLO模型转换为FPGA可实现的电路。这里使用了高级综合工具(High-Level Synthesis,HLS)来完成。HLS能够将高级编程语言(如C++)转换为硬件描述语言(如Verilog或VHDL),从而将高层次的算法转换为可执行的电路。 系统架构 该系统的总体架构如下图所示: ![image-20211004145016745](https://i.loli.net/2021/10/04/j8DtP6il7wKfdvn.png) 宿舍内的监控摄像头会不断采集视频流,并将视频流作为输入传入FPGA板子。FPGA板子中的HLS模块会将采集到的视频流按照固定的大小进行裁剪,并将裁剪后的图像作为输入传入CNN模型。CNN模型会对输入的图像进行处理,并输出检测结果。最后,FPGA板子中的视频输出模块会将检测结果映射到输出视频流中,输出到显示设备上。 开发流程 1. 安装Vivado开发环境 Vivado是一款Xilinx公司开发的FPGA设计软件,包含了电路设计、模拟、综合、布局、实现等功能,能够帮助开发者快速地完成FPGA系统的设计与实现。在开发本项目前,需要下载并安装Vivado。 2. 编写YOLO模型 在开始使用HLS转换模型之前,需要先编写CNN模型。YOLO是一种非常经典的CNN模型,其结构如下图所示: ![image-20211004145439314](https://i.loli.net/2021/10/04/cJkzFTh2NWL9lpI.png) YOLO模型包含了24个卷积层、2个全连接层和1个检测层。其中卷积层采用的是3x3大小的卷积核,辅以ReLU激活函数。全连接层使用的是Dropout技术来防止过拟合。检测层则通过从先验框中选择最佳匹配来确定检测结果。 该模型基于Darknet实现,可以从GitHub上下载源代码:https://github.com/AlexeyAB/darknet 3. 使用HLS转换模型 有了模型之后,接下来需要使用HLS将其转换为可行的硬件描述语言。这里我们使用Xilinx公司的Vivado HLS来进行转换。具体来说,需要进行以下步骤: 1. 使用Vivado HLS创建一个新项目,并将YOLO的C++实现加入到项目中。 2. 通过HLS自带的C-synthesis工具生成一个可综合的RTL文件(可执行的硬件描述语言代码)。 3. 通过Vivado工具将此RTL文件与其他必要的模块组成顶层模块,形成可综合的FPGA逻辑。 在将模型转换成可综合的硬件描述语言代码之后,需要对部分代码进行优化,以适应FPGA的特性。优化的内容包括: - 定点化:将模型中的浮点数转换为定点数,以减少资源消耗和延迟。 - 流水线化:将模型中的各层处理分为多个阶段,以增加吞吐量和降低延迟。 - 数据重用:对一些数据进行缓存,提高数据重用率,减少数据访问延迟。 4. 实现视频输入和输出模块 除了模型之外,还需要设计并实现视频输入和输出模块。在本项目中,视频输入模块需要实现以下功能: - 控制采集视频流的帧率和分辨率。 - 对采集到的视频流进行裁剪,以便传入CNN模型进行处理。 视频输出模块需要实现以下功能: - 在送入FPGA的数据流中插入输出图像的信号。 - 根据CNN输出的结果将监测框添加到输出图像中。 5. 在FPGA板子上实现系统 最后一步是将设计好的系统部署到FPGA板子上。这里需要将生成的二进制文件烧录到FPGA板子中,并连接相关硬件设备,如摄像头和显示器。 总结 本项目实现了基于FPGA的卷积神经网络宿舍人脸检测系统,能够实时地检测宿舍内的人脸,并将检测结果通过视频输出。该系统利用了高级综合工具将YOLO模型转化为可综合的硬件描述语言代码,使得模型能够在FPGA上实现加速。同时,该项目还涉及到视频输入、输出模块的设计与实现,这为FPGA系统的开发提供了新的思路与方向。

相关推荐

一、研究背景 人脸识别技术是一种基于生物特征的身份验证技术,已经广泛应用于各种场景中,例如安全监控、移动支付、智能家居等。随着计算机性能的提高和深度学习算法的发展,人脸识别技术在精度和效率上都有了大幅提升。然而,由于传统的计算机处理器对于深度学习算法的计算需求较大,导致处理速度较慢,难以满足实时性的要求。 FPGA(Field Programmable Gate Array)是一种可编程逻辑芯片,具有高效的并行计算能力和低功耗的特点。基于FPGA的卷积神经网络(CNN)加速器已经成为了深度学习算法加速的重要手段。相比于传统的计算机处理器,基于FPGA的CNN加速器可以提供更快的计算速度和更低的功耗。 二、研究目的 本文旨在设计和实现一种基于FPGA的卷积神经网络的人脸识别系统。主要研究内容包括: 1. 设计和实现一个基于FPGA的卷积神经网络加速器,用于加速人脸识别算法的计算过程。 2. 使用已有的人脸识别数据集,训练一个卷积神经网络模型,并将其部署到FPGA加速器上。 3. 对比基于FPGA的卷积神经网络加速器和传统的计算机处理器在人脸识别任务上的性能表现。 三、研究方法 本文采用以下研究方法: 1. 设计和实现基于FPGA的卷积神经网络加速器。首先,根据卷积神经网络的结构和计算过程,设计一个适合于FPGA实现的卷积神经网络加速器。然后,使用Verilog HDL语言实现该加速器,并进行仿真和验证。 2. 使用已有的人脸识别数据集,训练一个卷积神经网络模型。本文选用了LFW(Labeled Faces in the Wild)数据集作为训练数据集,使用深度学习框架TensorFlow训练一个卷积神经网络模型。 3. 部署卷积神经网络模型到FPGA加速器上,并对比基于FPGA的卷积神经网络加速器和传统的计算机处理器在人脸识别任务上的性能表现。本文将使用LFW数据集进行测试,并比较加速器和处理器的计算速度和识别精度。 四、论文结构 本文的结构如下: 第一章:绪论。介绍人脸识别技术和基于FPGA的卷积神经网络加速器的研究背景和研究目的。 第二章:相关技术。介绍卷积神经网络的基本原理和FPGA的基本结构和特点,以及FPGA加速器的设计和实现方法。 第三章:基于FPGA的卷积神经网络加速器设计。详细介绍基于FPGA的卷积神经网络加速器的设计和实现方法。 第四章:人脸识别算法实现。介绍人脸识别算法的实现方法,包括训练卷积神经网络模型和将模型部署到FPGA加速器上。 第五章:实验结果和分析。通过实验对比基于FPGA的卷积神经网络加速器和传统的计算机处理器在人脸识别任务上的性能表现,并分析加速器的优缺点。 第六章:总结和展望。总结本文的研究内容和贡献,并展望未来的研究方向。
FPGA(Field Programmable Gate Array)是一种可编程的逻辑器件,可以用于加速卷积神经网络(CNN)的源码。在传统的软件实现中,CNN的计算是由通用CPU完成的,但是由于CNN计算复杂度高,处理大量的图像数据需要较长的时间。而使用FPGA加速CNN可以提高计算效率。 首先,我们可以将CNN的计算任务通过编程的方式映射到FPGA上。FPGA提供了大量的可编程逻辑单元和存储器单元,可以根据CNN的计算需求进行合理的设计和配置。可以使用硬件描述语言(HDL)如Verilog或VHDL来编写FPGA的逻辑设计,描述网络层的计算过程。 然后,FPGA可以并行地执行卷积运算。CNN中的卷积操作是非常耗时的,通过在FPGA上进行并行计算,可以大大加快卷积运算的速度。FPGA可以同时处理多个卷积核与输入特征图之间的计算,提高了计算效率。 此外,FPGA还可以用于实现高速的存储器访问。CNN中的卷积运算需要大量的权重参数和中间结果的存储,而FPGA可以配置高速缓存和存储单元,提供快速的数据传输和访问速度。这样可以减少内存访问的延迟,进一步提高计算效率。 最后,FPGA还可以通过定制化设计来减少能耗。因为FPGA上的逻辑和存储单元是可编程的,可以根据CNN的计算需求来进行优化设计,避免不必要的计算和数据传输,降低功耗消耗,提高计算效率。 综上所述,使用FPGA加速卷积神经网络(CNN)源码可以提高计算效率。通过并行计算、高速存储器访问和定制化设计,FPGA可以加速CNN的计算过程,减少计算时间和能耗,提高性能。
卷积神经网络(Convolutional Neural Network, CNN)在深度学习领域中占据重要地位,其可以大大提高图像识别、语音识别以及自然语言处理等领域的准确率。近年来,随着FPGA硬件设备的不断完善以及对于AI芯片的需求增大,越来越多的研究在探索如何在硬件设备中实现基于CNN模型的计算任务,VerilogHDL是硬件描述语言中的一种,主要应用于各种数字系统的设计与开发之中。因此,基于VerilogHDL在FPGA上实现卷积神经网络的设计显得尤为重要。 首先,设计卷积神经网络AIIP计算架构。AIIP是一种专门为卷积神经网络设计的数字计算架构,其采用软件与硬件的混合计算方式,利用硬件的并行性加速卷积神经网络中的计算过程。其次,在FPGA芯片中实现AIIP计算架构。利用VerilogHDL语言编程实现各个模块,主要包括输入输出模块、卷积核模块、卷积计算模块、池化模块、全连接层模块和激活函数模块等。设计时需要考虑计算延迟、内存带宽以及能耗等因素。最后,采用实验数据对设计的卷积神经网络AIIP进行测试,可以通过比较软件和硬件计算得出结果的误差来衡量设计的准确程度以及效率。 与软件计算相比,利用FPGA实现的卷积神经网络AIIP硬件计算可以大大提高计算速度和功耗效率,具有更高的灵活性和适应性。随着芯片工艺和科技的不断发展,设计出更加高效、精准的卷积神经网络AIIP将是未来硬件计算领域的一个重要研究方向。
Vitis AI 是 Xilinx 推出的一款 AI 推理框架,可以用于加速卷积神经网络 (CNN) 的推理。下面是基于 Vitis AI 部署卷积神经网络的教程: 1. 准备工作 首先,你需要安装好 Xilinx 的 Vivado 和 Vitis AI 开发环境,并且有一个支持 Xilinx FPGA 的板卡。 2. 生成 Xilinx DPU IP 使用 Vitis AI 工具箱中的 DPU IP 生成器,将训练好的模型转换为 Xilinx DPU IP。具体步骤如下: - 打开 Vivado 工具,在 Tcl Console 中执行以下命令: cd source /settings64.sh vivado -mode tcl - 进入 Vivado 图形界面,加载 IP 创建向导: ipx::create_xgui_project dpu -name dpu -vendor xilinx.com -library ip -taxonomy /IP - 在创建向导中,选择 “DPU IP” 并按照提示填写参数。 - 生成 DPU IP 后,将其添加到 Vivado 工程中。 3. 将模型部署到 FPGA 上 使用 Vitis AI 工具箱中的编译器,将模型编译成可在 FPGA 上运行的二进制文件。具体步骤如下: - 打开 Vitis AI 工具箱的编译器,在菜单中选择“新建项目”。 - 在项目设置中,选择 FPGA 平台和 DPU IP。 - 导入模型文件,并按照提示填写模型参数。 - 编译项目并生成可执行文件。 4. 运行推理 将生成的可执行文件拷贝到 FPGA 上,然后使用 Vitis AI 工具箱中的运行时库进行推理。具体步骤如下: - 在 FPGA 上安装 Vitis AI 运行时库。 - 执行可执行文件进行推理。 以上就是基于 Vitis AI 部署卷积神经网络的教程。

最新推荐

基于FPGA的运动目标检测跟踪算法研究与实现.docx

本文基于xilinx公司的ARTIX-7系列芯片xc7a35t和cmos摄像头ov7725以及VGA显示屏搭建了一套硬件平台用以动态目标的检测跟踪。...实验结果表明,在FPGA上采用合适的算法搭建系统能实时、准确的检测并跟踪动态目标。

基于FPGA的快速人脸检测

基于FPGA的快速人脸检测 期刊文章 讲AdaBoost 人脸快速识别算法

基于Fpga的误码检测仪设计的程序

基于Fpga的误码检测仪设计的程序基于Fpga的误码检测仪设计的程序基于Fpga的误码检测仪设计的程序

基于FPGA的快速并行FFT及应用

利用FPGA丰富的逻辑单元实现快速傅里叶变换(FFT),解决 了在轨实时大数据量图像处理与航天级DSP运算速度不足之间的矛盾;利用溢出监测移位结构解决了定点运算的动态范围问题。经过实验验证,各项指标均达到了设计要求...

【24计算机考研】安徽师范大学24计算机考情分析

安徽师范大学24计算机考情分析 链接:https://pan.baidu.com/s/1FgQRVbVnyentaDcQuXDffQ 提取码:kdhz

数据结构1800试题.pdf

你还在苦苦寻找数据结构的题目吗?这里刚刚上传了一份数据结构共1800道试题,轻松解决期末挂科的难题。不信?你下载看看,这里是纯题目,你下载了再来私信我答案。按数据结构教材分章节,每一章节都有选择题、或有判断题、填空题、算法设计题及应用题,题型丰富多样,共五种类型题目。本学期已过去一半,相信你数据结构叶已经学得差不多了,是时候拿题来练练手了,如果你考研,更需要这份1800道题来巩固自己的基础及攻克重点难点。现在下载,不早不晚,越往后拖,越到后面,你身边的人就越卷,甚至卷得达到你无法想象的程度。我也是曾经遇到过这样的人,学习,练题,就要趁现在,不然到时你都不知道要刷数据结构题好还是高数、工数、大英,或是算法题?学完理论要及时巩固知识内容才是王道!记住!!!下载了来要答案(v:zywcv1220)。

语义Web动态搜索引擎:解决语义Web端点和数据集更新困境

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1497语义Web检索与分析引擎Semih Yumusak†KTO Karatay大学,土耳其semih. karatay.edu.trAI 4 BDGmbH,瑞士s. ai4bd.comHalifeKodazSelcukUniversity科尼亚,土耳其hkodaz@selcuk.edu.tr安德烈亚斯·卡米拉里斯荷兰特文特大学utwente.nl计算机科学系a.kamilaris@www.example.com埃利夫·尤萨尔KTO KaratayUniversity科尼亚,土耳其elif. ogrenci.karatay.edu.tr土耳其安卡拉edogdu@cankaya.edu.tr埃尔多安·多杜·坎卡亚大学里扎·埃姆雷·阿拉斯KTO KaratayUniversity科尼亚,土耳其riza.emre.aras@ogrenci.karatay.edu.tr摘要语义Web促进了Web上的通用数据格式和交换协议,以实现系统和机器之间更好的互操作性。 虽然语义Web技术被用来语义注释数据和资源,更容易重用,这些数据源的特设发现仍然是一个悬 而 未 决 的 问 题 。 流 行 的 语 义 Web �

matlabmin()

### 回答1: `min()`函数是MATLAB中的一个内置函数,用于计算矩阵或向量中的最小值。当`min()`函数接收一个向量作为输入时,它返回该向量中的最小值。例如: ``` a = [1, 2, 3, 4, 0]; min_a = min(a); % min_a = 0 ``` 当`min()`函数接收一个矩阵作为输入时,它可以按行或列计算每个元素的最小值。例如: ``` A = [1, 2, 3; 4, 0, 6; 7, 8, 9]; min_A_row = min(A, [], 2); % min_A_row = [1;0;7] min_A_col = min(A, [],

TFT屏幕-ILI9486数据手册带命令标签版.pdf

ILI9486手册 官方手册 ILI9486 is a 262,144-color single-chip SoC driver for a-Si TFT liquid crystal display with resolution of 320RGBx480 dots, comprising a 960-channel source driver, a 480-channel gate driver, 345,600bytes GRAM for graphic data of 320RGBx480 dots, and power supply circuit. The ILI9486 supports parallel CPU 8-/9-/16-/18-bit data bus interface and 3-/4-line serial peripheral interfaces (SPI). The ILI9486 is also compliant with RGB (16-/18-bit) data bus for video image display. For high speed serial interface, the ILI9486 also provides one data and clock lane and supports up to 500Mbps on MIPI DSI link. And also support MDDI interface.

数据搜索和分析

跟踪:PROFILES数据搜索:在网络上分析和搜索数据WWW 2018,2018年4月23日至27日,法国里昂1485表征数据集搜索查询艾米莉亚·卡普尔扎克英国南安普敦大学开放数据研究所emilia. theodi.org珍妮·坦尼森英国伦敦开放数据研究所jeni@theodi.org摘要在Web上生成和发布的数据量正在迅速增加,但在Web上搜索结构化数据仍然存在挑战。在本文中,我们探索数据集搜索分析查询专门为这项工作产生的通过众包-ING实验,并比较它们的搜索日志分析查询的数据门户网站。搜索环境的变化以及我们给人们的任务改变了生成的查询。 我们发现,在我们的实验中发出的查询比数据门户上的数据集的搜索查询要长得多。 它们还包含了七倍以上的地理空间和时间信息的提及,并且更有可能被结构化为问题。这些见解可用于根据数据集搜索的特定信息需求和特征关键词数据集搜索,�