列举1个log-Gabor的pytorch代码
时间: 2023-04-06 19:03:42 浏览: 180
以下是一个log-Gabor的pytorch代码:
```python
import torch
import torch.nn.functional as F
import numpy as np
def log_gabor_filter(size, sigma, wavelength, orientation):
"""生成一个log-Gabor滤波器"""
radius = size // 2
y, x = np.ogrid[-radius:radius+1, -radius:radius+1]
x *= np.cos(orientation)
y *= np.sin(orientation)
radius_squared = x**2 + y**2
filter = np.exp(-0.5 * (np.log(radius_squared / sigma**2)**2)) * np.cos(2 * np.pi * radius / wavelength)
return torch.from_numpy(filter).float()
filter = log_gabor_filter(64, 5, 10, np.pi/4)
image = torch.randn(1, 1, 256, 256)
filtered_image = F.conv2d(image, filter.view(1, 1, 64, 64), padding=32)
```
相关问题
log-Gabor的pytorch代码
我可以回答这个问题,以下是一个log-Gabor的pytorch代码示例:
```python
import torch
import torch.nn.functional as F
import numpy as np
def log_gabor_filter(size, sigma, theta, lambd, gamma):
"""Generate a log-Gabor filter."""
x, y = np.meshgrid(np.linspace(-size/2, size/2, size), np.linspace(-size/2, size/2, size))
x_theta = x * np.cos(theta) + y * np.sin(theta)
y_theta = -x * np.sin(theta) + y * np.cos(theta)
gb = np.exp(-(np.log(x_theta**2 + y_theta**2) / 2 / np.log(sigma))**2) * np.cos(2 * np.pi * x_theta / lambd + gamma)
return gb
class LogGaborFilter(torch.nn.Module):
"""Log-Gabor filter layer."""
def __init__(self, size, sigma, theta, lambd, gamma):
super(LogGaborFilter, self).__init__()
self.filter = torch.nn.Parameter(torch.Tensor(log_gabor_filter(size, sigma, theta, lambd, gamma)))
self.filter.requiresGrad = False
def forward(self, x):
return F.conv2d(x, self.filter.expand(x.shape[1], -1, -1, -1), padding=self.filter.shape[1]//2)
```
这个代码实现了一个log-Gabor滤波器层,可以用于图像处理任务。
log-gabor滤波器python代码
以下是 log-gabor 滤波器的 Python 代码:
```python
import numpy as np
import cv2
def log_gabor_filter(image, sigma, theta, Lambda, psi, gamma):
# 计算图像的傅里叶变换
fft_image = np.fft.fft2(image)
fft_shift_image = np.fft.fftshift(fft_image)
# 构造 log-gabor 滤波器
rows, cols = image.shape
u, v = np.meshgrid(np.arange(-cols/2, cols/2), np.arange(-rows/2, rows/2))
radius = np.sqrt(u**2 + v**2)
radius[0, 0] = 1
theta = theta * np.pi / 180
wavelength = Lambda
fo = 1.0 / wavelength
sigma_f = fo / np.pi * np.sqrt(np.log(2) / 2) * (np.power(2, gamma) + 1) / (np.power(2, gamma) - 1)
sigma_x = sigma / fo
sigma_y = sigma / fo / gamma
x_theta = u * np.cos(theta) + v * np.sin(theta)
y_theta = -u * np.sin(theta) + v * np.cos(theta)
gb = np.exp(-0.5 * (np.power(x_theta, 2) / np.power(sigma_x, 2) + np.power(y_theta, 2) / np.power(sigma_y, 2))) * np.cos(2 * np.pi * fo * x_theta + psi)
gb = gb * (radius <= radius.max() / 2)
# 对图像进行滤波
filtered_image = np.fft.ifft2(np.fft.ifftshift(fft_shift_image * gb))
return np.abs(filtered_image)
# 测试代码
if __name__ == '__main__':
image = cv2.imread('lena.jpg', cv2.IMREAD_GRAYSCALE)
filtered_image = log_gabor_filter(image, 10, 0, 10, 0, 0.5)
cv2.imshow('filtered image', filtered_image.astype(np.uint8))
cv2.waitKey(0)
cv2.destroyAllWindows()
```
希望能对你有所帮助!