Running in Durability level: MAX_SURVIVABILITY [2023-06-02 14:07:25] org.codehaus.groovy.control.MultipleCompilationErrorsException: startup failed: [2023-06-02 14:07:25] WorkflowScript: 26: No steps specified for branch @ line 26, column 13. [2023-06-02 14:07:25] steps { [2023-06-02 14:07:25] ^ [2023-06-02 14:07:25] [2023-06-02 14:07:25] 1 error [2023-06-02 14:07:25] [2023-06-02 14:07:25] at org.codehaus.groovy.control.ErrorCollector.failIfErrors(ErrorCollector.java:310) [2023-06-02 14:07:25] at org.codehaus.groovy.control.CompilationUnit.applyToPrimaryClassNodes(CompilationUnit.java:1085) [2023-06-02 14:07:25] at org.codehaus.groovy.control.CompilationUnit.doPhaseOperation(CompilationUnit.java:603) [2023-06-02 14:07:25] at org.codehaus.groovy.control.CompilationUnit.processPhaseOperations(CompilationUnit.java:581) [2023-06-02 14:07:25] at org.codehaus.groovy.control.CompilationUnit.compile(CompilationUnit.java:558) [2023-06-02 14:07:25] at groovy.lang.GroovyClassLoader.doParseClass(GroovyClassLoader.java:298) [2023-06-02 14:07:25] at groovy.lang.GroovyClassLoader.parseClass(GroovyClassLoader.java:268) [2023-06-02 14:07:25] at groovy.lang.GroovyShell.parseClass(GroovyShell.java:688) [2023-06-02 14:07:25] at groovy.lang.GroovyShell.parse(GroovyShell.java:700) [2023-06-02 14:07:25] at org.jenkinsci.plugins.workflow.cps.CpsGroovyShell.doParse(CpsGroovyShell.java:142) [2023-06-02 14:07:25] at org.jenkinsci.plugins.workflow.cps.CpsGroovyShell.reparse(CpsGroovyShell.java:127) [2023-06-02 14:07:25] at org.jenkinsci.plugins.workflow.cps.CpsFlowExecution.parseScript(CpsFlowExecution.java:571) [2023-06-02 14:07:25] at org.jenkinsci.plugins.workflow.cps.CpsFlowExecution.start(CpsFlowExecution.java:523) [2023-06-02 14:07:25] at org.jenkinsci.plugins.workflow.job.WorkflowRun.run(WorkflowRun.java:327) [2023-06-02 14:07:25] at hudson.model.ResourceController.execute(ResourceController.java:100) [2023-06-02 14:07:25] at hudson.model.Executor.run(Executor.java:433) [2023-06-02 14:07:25] Finished: FAILURE

时间: 2024-03-02 14:48:35 浏览: 46
这个错误提示是因为您在 Jenkinsfile 中定义了一个分支但是没有指定分支的步骤。 您可以检查一下 Jenkinsfile 的第 26 行,看看有没有漏掉什么内容或者格式错误。如果您想要定义一个空的分支,可以使用一个空的 `steps` 闭包,例如: ``` pipeline { agent any stages { stage('Build') { steps { sh 'npm install' } } stage('Test') { steps { sh 'npm test' } } } post { always { echo 'This will be run no matter what' } success { echo 'This will only run if successful' } failure { echo 'This will only run if failed' } // Define an empty branch branch '' { steps {} } } } ``` 在上面的示例中,我们定义了一个空的分支,其中 `branch` 指令中的空字符串表示该分支没有名称,`steps` 闭包中没有任何内容。这样就可以避免分支未定义步骤而导致的错误。

相关推荐

[2023-05-31 11:07:02] Started by user coding [2023-05-31 11:07:02] Running in Durability level: MAX_SURVIVABILITY [2023-05-31 11:07:04] [Pipeline] Start of Pipeline [2023-05-31 11:07:06] [Pipeline] getContext [2023-05-31 11:07:07] [Pipeline] node [2023-05-31 11:07:07] Running on Jenkins in /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995 [2023-05-31 11:07:07] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] withEnv [2023-05-31 11:07:08] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] withDockerRegistry [2023-05-31 11:07:08] [Pipeline] { [2023-05-31 11:07:08] [Pipeline] isUnix [2023-05-31 11:07:08] [Pipeline] sh [2023-05-31 11:07:08] + docker inspect -f . public/docker/nodejs:18-2022 [2023-05-31 11:07:08] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-221f7a67/script.sh: 1: docker: not found [2023-05-31 11:07:08] [Pipeline] isUnix [2023-05-31 11:07:08] [Pipeline] sh [2023-05-31 11:07:09] + docker inspect -f . coding-public-docker.pkg.coding.net/public/docker/nodejs:18-2022 [2023-05-31 11:07:09] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-4892b310/script.sh: 1: docker: not found [2023-05-31 11:07:09] [Pipeline] isUnix [2023-05-31 11:07:09] [Pipeline] sh [2023-05-31 11:07:09] + docker pull coding-public-docker.pkg.coding.net/public/docker/nodejs:18-2022 [2023-05-31 11:07:09] /root/codingci/tools/jenkins_home/workspace/2553946-cci-31810232-464995@tmp/durable-0770ad1b/script.sh: 1: docker: not found [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // withDockerRegistry [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // withEnv [2023-05-31 11:07:09] [Pipeline] } [2023-05-31 11:07:09] [Pipeline] // node [2023-05-31 11:07:09] [Pipeline] End of Pipeline [2023-05-31 11:07:09] ERROR: script returned exit code 127 [2023-05-31 11:07:09] Finished: FAILURE

用中文总结以下内容: A number of experimental and numerical investigations have been conducted to study the MBPP stack and wavy flow field characteristics with various designs [10,11]. T. Chu et al. conducted the durability test of a 10-kW MBPP fuel cell stack containing 30 cells under dynamic driving cycles and analyzed the performance degradation mechanism [12]. X. Li et al. studied the deformation behavior of the wavy flow channels with thin metallic sheet of 316 stainless steel from both experimental and simulation aspects [13]. J. Owejan et al. designed a PEMFC stack with anode straight flow channels and cathode wavy flow channels and studied the in situ water distributions with neutron radiograph [14]. T. Tsukamoto et al. simulated a full-scale MBPP fuel cell stack of 300 cm2 active area at high current densities and used the 3D model to analyze the in-plane and through-plane parameter distributions [15]. G. Zhang et al. developed a two-fluid 3D model of PEMFC to study the multi-phase and convection effects of wave-like flow channels which are symmetric between anode and cathode sides [16]. S. Saco et al. studied the scaled up PEMFC numerically and compared straight parallel, serpentine zig-zag and straight zig-zag flow channels cell with zig-zag flow field with a transient 3D numerical model to analyze the subfreezing temperature cold start operations [18]. P. Dong et al. introduced discontinuous S-shaped and crescent ribs into flow channels based on the concept of wavy flow field for optimized design and improved energy performance [19]. I. Anyanwu et al. investigated the two-phase flow in sinusoidal channel of different geometric configurations for PEMFC and analyzed the effects of key dimensions on the droplet removal in the flow channel [20]. Y. Peng et al. simulated 5-cell stacks with commercialized flow field designs, including Ballard-like straight flow field, Honda-like wavy flow field and Toyota-like 3D mesh flow field, to investigate their thermal management performance [21]. To note, the terms such as sinusoidal, zig-zag, wave-like and Sshaped flow channels in the aforementioned literatures are similar to the so called wavy flow channels in this paper with identical channel height for the entire flow field. The through-plane constructed wavy flow channels with periodically varied channel heights are beyond the scope of this paper [22,23].

最新推荐

recommend-type

数据库系统概念知识点总结.pdf

* 事务的特性:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability) 九、数据库用户和管理员 * 无知的用户(Naive users):只使用先前写好的应用程序 * 老练的用户...
recommend-type

2020面试真题Java+大数据--杭州

- **ACID**是数据库事务的四个基本属性,包括原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability),保证了数据库操作的可靠性和数据完整性。 6. **JDK与JRE**: - **JDK**...
recommend-type

数据库中事务和锁.ppt

事务的四个特性,即ACID属性,是原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持久性(Durability)。原子性保证事务中的所有操作要么全部完成,要么全部不完成,一致性则保证事务完成后,...
recommend-type

MySQL数据库面试题(2020最新版)

- 原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)、持久性(Durability)。 15. **锁** - 表级锁、行级锁、页级锁等,InnoDB采用行级锁以提高并发。 16. **视图** - 视图是虚拟表,根据查询...
recommend-type

微软内部资料-SQL性能优化3

In our example, if one transaction (T1) holds an exclusive lock at the table level, and another transaction (T2) holds an exclusive lock at the row level, each of the transactions believe they have ...
recommend-type

安科瑞ACR网络电力仪表详细规格与安装指南

安科瑞ACR系列网络多功能电力仪表是一款专为电力系统、工矿企业、公用设施和智能大厦设计的智能电表。这款仪表集成了全面的电力参数测量功能,包括单相或三相的电流、电压、有功功率、无功功率、视在功率、频率和功率因数的实时监测。它还具备先进的电能计量和考核管理能力,例如四象限电能计量(能够区分有功和无功电量)、分时电能统计(支持峰谷平电价的计算)、最大需量记录以及详尽的12个月电能统计数据,便于对用电情况进行精细管理和分析。 用户手册详细介绍了产品的安装使用方法,确保用户能够正确安装和连接仪表。安装步骤和接线部分可能会涉及安全注意事项、仪表与电网的连接方式、输入输出端口的识别以及不同环境下的安装适应性。此外,手册中还包含了产品的技术参数,这些参数可能包括精度等级、测量范围、工作电压范围、通信接口类型(如RS-485、以太网等)、以及兼容的操作系统或通信协议。 购买前,用户应通过查询当地代理商了解产品的最新规格和技术更新,以确保获取到最准确的产品信息。版权申明指出,未经安科瑞电气股份有限公司的书面许可,手册内容不能被擅自摘抄或复制,否则将承担相应的法律责任。 该说明书的结构严谨,内容覆盖了从产品概述、详细规格、技术参数解读到实际操作的各个环节,旨在帮助用户高效、安全地使用ACR系列网络电力仪表,并充分利用其功能进行电力系统的精细化管理。对于从事电力工程、能源管理或相关领域工作的专业人士来说,这份说明书是不可或缺的参考工具。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

步进电机单片机控制软件设计指南:架构、算法和优化,打造高效电机控制系统

![步进电机单片机控制软件设计指南:架构、算法和优化,打造高效电机控制系统](http://www.jucreate.com//u/cms/www//202307/261112163nit.png) # 1. 步进电机单片机控制系统概述 步进电机单片机控制系统是一种利用单片机控制步进电机运行的系统,广泛应用于工业自动化、医疗设备和机器人等领域。步进电机具有精度高、响应快、控制灵活等优点,而单片机则具有成本低、体积小、功能强大的特点。步进电机单片机控制系统通过单片机发出控制信号,驱动步进电机按照预定的步长和方向运动,实现精密的定位和控制。 # 2. 步进电机控制算法 步进电机控制算法是步进
recommend-type

-lmsc collect2: error: ld returned 1 exit status

这个错误信息通常出现在Linux系统中,当你试图编译链接程序时,特别是使用GCC(GNU Compiler Collection)工具链。`-lmsc collect2: error: ld returned 1 exit status` 的含义是,在链接阶段(`ld`)遇到了问题,返回了非零退出状态(1),这表明链接过程失败。 其中: - `-lmsc` 指的是链接库(libraries)的一部分,可能是对某个名为 "mssc" 的动态链接库的引用。如果该库不存在或者路径配置错误,就会引发这个问题。 - `collect2` 是链接器(collector)的一部分,它负责将编译后的目标文件
recommend-type

西门子全集成自动化解决方案在风电行业的应用与优势

"西门子全集成自动化在风电行业的应用" 西门子全集成自动化(TIA, Totally Integrated Automation)系统是西门子为风电行业提供的一种先进的自动化解决方案。该系统在风电行业中的应用旨在提高风力发电机组和风力发电场的效率、可用性和可靠性,同时降低总体拥有成本。随着全球对清洁能源的需求日益增长,风能作为一种无尽的可再生能源,其重要性不言而喻。根据描述,到2017年,全球风能装机容量预计将有显著增长,这为相关制造商和建筑商带来了巨大的机遇,也加剧了市场竞争。 全集成自动化的核心是SIMATIC系列控制器,如SIMATIC Microbox,它专门设计用于风力发电的各种控制任务。SIMATIC不仅满足了机械指令的安全要求,还能灵活适应风力发电行业的不断变化的需求。这种自动化解决方案提供了一个开放的系统架构,适应国际市场的多元化需求,确保最大开放性,同时保护制造商的专有知识。 在风电设备的功能层面,全集成自动化涵盖了多个关键领域: - 发电机组控制:确保发电机组高效运行,优化风能转化为电能的过程。 - 分布式智能:利用分散式控制系统提升整体性能,减少中央系统的负担。 - 人机界面(HMI):提供直观的操作和监控界面,简化人员操作。 - 通信:实现风力发电机组间的通信,协调整个风力发电场的工作。 - 风力发电场管理:自动化管理整个风场,提高运营效率。 - 诊断和远程监视:实时监控设备状态,及时进行故障诊断和维护。 - 状态监测:通过高级传感器技术持续评估设备健康状况。 - 桨距控制:根据风速调整风轮叶片角度,以优化能量捕获。 - 偏航系统控制:确保机舱随风向调整,最大化风能利用率。 - 电力配送:高效分配生成的电能,确保电网稳定。 - 液压控制:精确控制液压系统,保障设备正常运行。 此外,安全功能的集成,如安全逻辑控制和数据安全性,确保了设备在运行过程中的安全。系统的高质量和坚固性使其能够在恶劣的户外环境中稳定工作。西门子还提供工程组态软件、维修、支持和培训服务,确保用户能够充分利用全集成自动化的优势。 通过全集成自动化,西门子提供了一种系统化的方法来提升整个风电价值链的生产力。统一的工程环境使得设计、配置和调试更为便捷,减少了时间和成本。西门子全集成自动化解决方案的全面性和灵活性,使其成为风电行业实现长期成功的关键因素。