遗传算法、粒子群算法求解纳什均衡点

时间: 2023-10-26 12:05:29 浏览: 214
ZIP

遗传算法求解纳什均衡,基于GA的纳什均衡求解

纳什均衡点是一个博弈中的稳定状态,每个玩家都采取最优策略,没有任何一个玩家可以通过改变自己的策略来获得更多的收益。求解纳什均衡点是博弈论中的一个重要问题,一般可以使用遗传算法或者粒子群算法进行求解。 遗传算法是一种模拟自然进化过程的优化算法,主要包括选择、交叉和变异三个操作。在求解纳什均衡点时,可以将每个玩家的策略作为一个个体,将所有个体组成一个种群。然后通过选择、交叉和变异等操作,逐步优化种群中的个体,直到达到稳定状态,即找到了纳什均衡点。 粒子群算法是一种模拟鸟群或鱼群等群体行为的优化算法,主要包括初始化、更新和适应度评估三个操作。在求解纳什均衡点时,可以将每个玩家的策略看作一个粒子,每个粒子的位置表示该玩家的策略。然后通过更新和适应度评估等操作,逐步优化粒子的位置,直到达到稳定状态,即找到了纳什均衡点。 总体来说,遗传算法和粒子群算法都可以用于求解纳什均衡点,具体选择哪种算法取决于具体问题的特点和求解效率。
阅读全文

相关推荐

zip
本框架提供了有关粒子群算法(PSO)和遗传算法(GA)的完整实现,以及一套关于改进、应用、测试、结果输出的完整框架。 本框架对粒子群算法与遗传算法进行逻辑解耦,对其中的改进点予以封装,进行模块化,使用者可以采取自己对该模块的改进替换默认实现组成新的改进算法与已有算法进行对比试验。试验结果基于Excel文件输出,并可通过设定不同的迭代结束方式选择试验数据的输出方式,包括: 1. 输出随迭代次数变化的平均达优率数据(设定终止条件区间大于0)。 2. 输出随迭代次数变化的平均最优值数据(设定终止条件区间等于0)。 本框架了包含了常用基准函数的实现以及遗传算法与粒子群算法对其的求解方案实现和对比,如TSP,01背包,Banana函数,Griewank函数等。并提供大量工具方法,如KMeans,随机序列生成与无效序列修补方法等等。 对遗传算法的二进制编码,整数编码,实数编码,整数序列编码(用于求解TSP等),粒子群算法的各种拓扑结构,以及两种算法的参数各种更新方式均有实现,并提供接口供使用者实现新的改进方式并整合入框架进行试验。 其中还包括对PSO进行离散化的支持接口,和自己的设计一种离散PSO方法及其用以求解01背包问题的实现样例。 欢迎参考并提出宝贵意见,特别欢迎愿意协同更新修补代码的朋友(邮箱starffly@foxmail.com)。 代码已作为lakeast项目托管在Google Code: http://code.google.com/p/lakeast http://code.google.com/p/lakeast/downloads/list 某些类的功能说明: org.lakest.common中: BoundaryType定义了一个枚举,表示变量超出约束范围时为恢复到约束范围所采用的处理方式,分别是NONE(不处理),WRAP(加减若干整数个区间长度),BOUNCE(超出部分向区间内部折叠),STICK(取超出方向的最大限定值)。 Constraint定义了一个代表变量约束范围的类。 Functions定义了一系列基准函数的具体实现以供其他类统一调用。 InitializeException定义了一个代表程序初始化出现错误的异常类。 Randoms类的各个静态方法用以产生各种类型的随机数以及随机序列的快速产生。 Range类的实现了用以判断变量是否超出约束范围以及将超出约束范围的变量根据一定原则修补到约束范围的方法。 ToStringBuffer是一个将数组转换为其字符串表示的类。 org.lakeast.ga.skeleton中: AbstractChromosome定义了染色体的公共方法。 AbstractDomain是定义问题域有关的计算与参数的抽象类。 AbstractFactorGenerator定义产生交叉概率和变异概率的共同方法。 BinaryChromosome是采用二进制编码的染色体的具体实现类。 ConstantFactorGenerator是一个把交叉概率和变异概率定义为常量的参数产生器。 ConstraintSet用于在计算过程中保存和获取应用问题的各个维度的约束。 Domain是遗传算法求解中所有问题域必须实现的接口。 EncodingType是一个表明染色体编码类型的枚举,包括BINARY(二进制),REAL(实数),INTEGER(整型)。 Factor是交叉概率和变异概率的封装。 IFactorGenerator参数产生器的公共接口。 Population定义了染色体种群的行为,包括种群的迭代,轮盘赌选择和交叉以及最优个体的保存。 org.lakeast.ga.chromosome中: BinaryChromosome二进制编码染色体实现。 IntegerChromosome整数编码染色体实现。 RealChromosome实数编码染色体实现。 SequenceIntegerChromosome整数序列染色体实现。 org.lakeast.pso.skeleton中: AbstractDomain提供一个接口,将粒子的位置向量解释到离散空间,同时不干扰粒子的更新方式。 AbstractFactorGenerator是PSO中参数产生器的公共抽象类。 AbstractParticle定义了PSO种群中粒子的基本行为,最主要是实现了如何根据现有位置计算得到下一代粒子的位置的合法值。 ConstraintSet用于在粒子迭代过程中保存和获取应用问题的各个维度的约束。 AbstractSwarm.java各种拓扑结构的PSO种群的抽象父类,主要实现了种群迭代过程中计算流程的定义以及中间数据被如何输出到测试工具类。 Domain是PSO算法求解中所有问题域必须实现的接口。 DynamicFatorGenerator若种群在迭代过程中,w,c1,c2随迭代次数发生变化,那么它们的产生器需要继承这个抽象类。 Factor封装了w,c1,c2三个参数的字面值。 Location用于保存和获取迭代中粒子的位置和速度向量的数值。 NeighborhoodBestParticle定义了采用邻域版本的PSO算法的具体实现。主要是实现了如何根据邻域版本的PSO算法计算下一迭代中的粒子速度。 RingTopoSwarm定义环拓扑结构的具体实现,主要是定义了如何获取粒子的邻域粒子的方法。 StaticTopoSwarm静态拓扑结构的PSO算法的抽象父类。 org.lakeast.pso.swarm中包含粒子群拓扑结构的各种实现,基本见名知意。 对各种问题的求解样例位于org.lakeast.main包中,以...TaskTest结尾,基本见名知意。 以ShafferF6DomainTaskTes对ShafferF6函数进行求解(采用的是PSO,遗传算法样例参见TSPValueTaskTest)为例说明求解过程如下: 1. 入口函数位于org.lakeast.main.ShafferF6DomainTaskTest中,go函数执行。 2. 在go函数中,首先指定迭代次数(numberOfIterations),测试多少轮(testCount,多次运行以得到平均达优值),种群大小(popSize),邻域大小(neighborhoodSize),迭代结束条件(exitCondition,由于制定了迭代次数,所以设定为[0,0],也就是只有达到指定迭代次数才退出)。 3. 以testCount,numberOfIterations以及迭代结束条件exitCondition为参数构建TestBatch类的实例batch。这个类用来进行管理参与测试的各种具体算法,且把数据结果按指定的格式输出为Excel文件。 4. 指定PSO中的因子产生方法,采用ExponentFactorGenerator和ConstrictFactorGenerator两种方式(实现位于org.lakeast.pso.gen包)。 5. Y表示参与测试的算法数目。 6. Testable是所有可以被TestBatch测试的类需要实现的接口,以提供TestBatch生成结果Excel文件所需要的数据。 7. Domain接口是所有可以被算法解决的问题所需要实现的接口,比如说明该问题所需要的粒子位置约束范围,速度约束范围,以及适值评估的公司等。这里的Domain被实例化为ShafferF6Domain,也就是按照ShafferF6函数评估适值。 8. RingTopoSwarm是用来封装环拓扑邻域结构的类,NeighboordBestParticle是配合该类来实现按邻域最优更新速度而不是全局最优来更新。 9. 各个测试算法都被加入到TestBatch以后,batch.run()开始执行算法比较过程并输出结果Excel文件到C盘根目录(输出路径可在Testable接口中配置,除了生成Excel文件外,还可以通过修改log4j.properties在制定的位置产生运行结果日志)。

最新推荐

recommend-type

粒子群算法和遗传算法的应用

"粒子群算法和遗传算法的应用" 本文主要介绍了粒子群算法和遗传算法在解决车间调度问题和多目标优化问题中的应用。 首先,遗传算法(GA)是一种模拟生物进化系统的随机搜索方法。它可以对求解问题本身一无所知,...
recommend-type

Python编程实现粒子群算法(PSO)详解

主要介绍了Python编程实现粒子群算法(PSO)详解,涉及粒子群算法的原理,过程,以及实现代码示例,具有一定参考价值,需要的朋友可以了解下。
recommend-type

基于遗传算法的矩形件排样问题求解

《基于遗传算法的矩形件排样问题求解》 矩形件优化排样是工业...未来的研究可以进一步探讨如何优化遗传算法的参数设置,以及如何结合其他优化技术,如模拟退火、粒子群优化等,以求得更高效、更精确的排样解决方案。
recommend-type

遗传算法 粒子群 背包 matlab

《遗传算法与粒子群优化在背包问题中的应用》 遗传算法和粒子群优化是两种广泛应用于解决复杂优化问题的计算智能方法。它们均基于自然选择和群体行为的原理,能够处理多目标、非线性和约束优化问题,尤其适用于背包...
recommend-type

python 遗传算法求函数极值的实现代码

本篇将详细解释如何使用Python实现遗传算法来求解函数的极值。 首先,我们创建一个名为`Ga`的类,该类包含了遗传算法的核心组件: 1. **初始化**:`__init__`方法设置了搜索空间的边界(`boundsbegin`和`boundsend...
recommend-type

全国江河水系图层shp文件包下载

资源摘要信息:"国内各个江河水系图层shp文件.zip" 地理信息系统(GIS)是管理和分析地球表面与空间和地理分布相关的数据的一门技术。GIS通过整合、存储、编辑、分析、共享和显示地理信息来支持决策过程。在GIS中,矢量数据是一种常见的数据格式,它可以精确表示现实世界中的各种空间特征,包括点、线和多边形。这些空间特征可以用来表示河流、道路、建筑物等地理对象。 本压缩包中包含了国内各个江河水系图层的数据文件,这些图层是以shapefile(shp)格式存在的,是一种广泛使用的GIS矢量数据格式。shapefile格式由多个文件组成,包括主文件(.shp)、索引文件(.shx)、属性表文件(.dbf)等。每个文件都存储着不同的信息,例如.shp文件存储着地理要素的形状和位置,.dbf文件存储着与这些要素相关的属性信息。本压缩包内还包含了图层文件(.lyr),这是一个特殊的文件格式,它用于保存图层的样式和属性设置,便于在GIS软件中快速重用和配置图层。 文件名称列表中出现的.dbf文件包括五级河流.dbf、湖泊.dbf、四级河流.dbf、双线河.dbf、三级河流.dbf、一级河流.dbf、二级河流.dbf。这些文件中包含了各个水系的属性信息,如河流名称、长度、流域面积、流量等。这些数据对于水文研究、环境监测、城市规划和灾害管理等领域具有重要的应用价值。 而.lyr文件则包括四级河流.lyr、五级河流.lyr、三级河流.lyr,这些文件定义了对应的河流图层如何在GIS软件中显示,包括颜色、线型、符号等视觉样式。这使得用户可以直观地看到河流的层级和特征,有助于快速识别和分析不同的河流。 值得注意的是,河流按照流量、流域面积或长度等特征,可以被划分为不同的等级,如一级河流、二级河流、三级河流、四级河流以及五级河流。这些等级的划分依据了水文学和地理学的标准,反映了河流的规模和重要性。一级河流通常指的是流域面积广、流量大的主要河流;而五级河流则是较小的支流。在GIS数据中区分河流等级有助于进行水资源管理和防洪规划。 总而言之,这个压缩包提供的.shp文件为我们分析和可视化国内的江河水系提供了宝贵的地理信息资源。通过这些数据,研究人员和规划者可以更好地理解水资源分布,为保护水资源、制定防洪措施、优化水资源配置等工作提供科学依据。同时,这些数据还可以用于教育、科研和公共信息服务等领域,以帮助公众更好地了解我国的自然地理环境。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Keras模型压缩与优化:减小模型尺寸与提升推理速度

![Keras模型压缩与优化:减小模型尺寸与提升推理速度](https://dvl.in.tum.de/img/lectures/automl.png) # 1. Keras模型压缩与优化概览 随着深度学习技术的飞速发展,模型的规模和复杂度日益增加,这给部署带来了挑战。模型压缩和优化技术应运而生,旨在减少模型大小和计算资源消耗,同时保持或提高性能。Keras作为流行的高级神经网络API,因其易用性和灵活性,在模型优化领域中占据了重要位置。本章将概述Keras在模型压缩与优化方面的应用,为后续章节深入探讨相关技术奠定基础。 # 2. 理论基础与模型压缩技术 ### 2.1 神经网络模型压缩
recommend-type

MTK 6229 BB芯片在手机中有哪些核心功能,OTG支持、Wi-Fi支持和RTC晶振是如何实现的?

MTK 6229 BB芯片作为MTK手机的核心处理器,其核心功能包括提供高速的数据处理、支持EDGE网络以及集成多个通信接口。它集成了DSP单元,能够处理高速的数据传输和复杂的信号处理任务,满足手机的多媒体功能需求。 参考资源链接:[MTK手机外围电路详解:BB芯片、功能特性和干扰滤波](https://wenku.csdn.net/doc/64af8b158799832548eeae7c?spm=1055.2569.3001.10343) OTG(On-The-Go)支持是通过芯片内部集成功能实现的,允许MTK手机作为USB Host与各种USB设备直接连接,例如,连接相机、键盘、鼠标等
recommend-type

点云二值化测试数据集的详细解读

资源摘要信息:"点云二值化测试数据" 知识点: 一、点云基础知识 1. 点云定义:点云是由点的集合构成的数据集,这些点表示物体表面的空间位置信息,通常由三维扫描仪或激光雷达(LiDAR)生成。 2. 点云特性:点云数据通常具有稠密性和不规则性,每个点可能包含三维坐标(x, y, z)和额外信息如颜色、反射率等。 3. 点云应用:广泛应用于计算机视觉、自动驾驶、机器人导航、三维重建、虚拟现实等领域。 二、二值化处理概述 1. 二值化定义:二值化处理是将图像或点云数据中的像素或点的灰度值转换为0或1的过程,即黑白两色表示。在点云数据中,二值化通常指将点云的密度或强度信息转换为二元形式。 2. 二值化的目的:简化数据处理,便于后续的图像分析、特征提取、分割等操作。 3. 二值化方法:点云的二值化可能基于局部密度、强度、距离或其他用户定义的标准。 三、点云二值化技术 1. 密度阈值方法:通过设定一个密度阈值,将高于该阈值的点分类为前景,低于阈值的点归为背景。 2. 距离阈值方法:根据点到某一参考点或点云中心的距离来决定点的二值化,距离小于某个值的点为前景,大于的为背景。 3. 混合方法:结合密度、距离或其他特征,通过更复杂的算法来确定点的二值化。 四、二值化测试数据的处理流程 1. 数据收集:使用相应的设备和技术收集点云数据。 2. 数据预处理:包括去噪、归一化、数据对齐等步骤,为二值化处理做准备。 3. 二值化:应用上述方法,对预处理后的点云数据执行二值化操作。 4. 测试与验证:采用适当的评估标准和测试集来验证二值化效果的准确性和可靠性。 5. 结果分析:通过比较二值化前后点云数据的差异,分析二值化效果是否达到预期目标。 五、测试数据集的结构与组成 1. 测试数据集格式:文件可能以常见的点云格式存储,如PLY、PCD、TXT等。 2. 数据集内容:包含了用于测试二值化算法性能的点云样本。 3. 数据集数量和多样性:根据实际应用场景,测试数据集应该包含不同类型、不同场景下的点云数据。 六、相关软件工具和技术 1. 点云处理软件:如CloudCompare、PCL(Point Cloud Library)、MATLAB等。 2. 二值化算法实现:可能涉及图像处理库或专门的点云处理算法。 3. 评估指标:用于衡量二值化效果的指标,例如分类的准确性、召回率、F1分数等。 七、应用场景分析 1. 自动驾驶:在自动驾驶领域,点云二值化可用于道路障碍物检测和分割。 2. 三维重建:在三维建模中,二值化有助于提取物体表面并简化模型复杂度。 3. 工业检测:在工业检测中,二值化可以用来识别产品缺陷或确保产品质量标准。 综上所述,点云二值化测试数据的处理是一个涉及数据收集、预处理、二值化算法应用、效果评估等多个环节的复杂过程,对于提升点云数据处理的自动化、智能化水平至关重要。