ACS算法matlab代码
时间: 2023-08-01 13:06:27 浏览: 220
以下是ACS算法的Matlab代码:
```matlab
function [bestSolution, bestFitness] = ACS(numAnts, numIterations, alpha, beta, rho, Q, distMatrix)
% numAnts: 蚂蚁数量
% numIterations: 迭代次数
% alpha: 信息素重要程度因子
% beta: 启发式因子
% rho: 信息素挥发因子
% Q: 常数因子
% distMatrix: 距离矩阵
% 初始化信息素矩阵
tau = ones(size(distMatrix));
% 初始化最优解和最优适应度
bestSolution = [];
bestFitness = Inf;
for iter = 1:numIterations
% 初始化每个蚂蚁的当前位置
currentCity = ones(numAnts, 1);
% 初始化每个蚂蚁的已访问城市集合
visitedCities = zeros(numAnts, size(distMatrix, 1));
% 计算启发因子矩阵
eta = 1./distMatrix;
eta(eta == Inf) = 0;
% 初始化每个蚂蚁的路径长度
tourLength = zeros(numAnts, 1);
% 每个蚂蚁依次选择下一个城市
for cityCount = 2:size(distMatrix, 1)
% 计算每个蚂蚁当前城市到其他未访问城市的转移概率
probabilities = tau(currentCity,:).^alpha .* eta(currentCity,:).^beta;
probabilities(:,visitedCities) = 0;
% 对概率进行归一化
probabilities = probabilities./sum(probabilities, 2);
% 随机选择下一个城市
nextCity = arrayfun(@(x) randsample(size(distMatrix, 1), 1, true, probabilities(x,:)), 1:numAnts)';
% 更新当前城市和已访问城市集合
visitedCities(sub2ind([numAnts, size(distMatrix, 1)], 1:numAnts, nextCity')) = 1;
currentCity = nextCity;
% 累计路径长度
tourLength = tourLength + distMatrix(sub2ind(size(distMatrix), currentCity, nextCity));
end
% 计算每个蚂蚁的适应度
fitness = tourLength;
% 更新最优解和最优适应度
[minFitness, minIndex] = min(fitness);
if minFitness < bestFitness
bestFitness = minFitness;
bestSolution = currentCity(minIndex,:);
end
% 更新信息素矩阵
deltaTau = zeros(size(distMatrix));
for ant = 1:numAnts
for cityCount = 1:(size(distMatrix, 1)-1)
i = currentCity(ant);
j = currentCity(ant+1);
deltaTau(i,j) = deltaTau(i,j) + Q./tourLength(ant);
end
end
tau = (1-rho).*tau + deltaTau;
end
end
```
其中,`numAnts` 为蚂蚁数量,`numIterations` 为迭代次数,`alpha` 为信息素重要程度因子,`beta` 为启发式因子,`rho` 为信息素挥发因子,`Q` 为常数因子,`distMatrix` 为距离矩阵。函数返回最优解和最优适应度。
阅读全文