请在paddle上训练一个CNN,输入是120*5*600*600的规格,输出也是同样规格,两层卷积,两层线性层,两层反卷积层,请输出完整代码
时间: 2023-05-24 07:02:21 浏览: 69
以下是可以用 Paddle 训练一个符合要求的CNN网络的代码:
```python
import paddle
import paddle.nn as nn
class Net(nn.Layer):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2D(120, 3, padding=1)
self.pool1 = nn.MaxPool2D(2, stride=2)
self.conv2 = nn.Conv2D(240, 3, padding=1)
self.pool2 = nn.MaxPool2D(2, stride=2)
self.fc1 = nn.Linear(240 * 150 * 150, 120)
self.fc2 = nn.Linear(120, 96000)
self.deconv1 = nn.Conv2DTranspose(240, 3, padding=1, output_padding=1)
self.deconv2 = nn.Conv2DTranspose(120, 3, padding=1, output_padding=1)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = self.pool1(x)
x = self.conv2(x)
x = nn.functional.relu(x)
x = self.pool2(x)
x = paddle.flatten(x, start_axis=1, stop_axis=-1)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
x = nn.reshape(x, shape=(-1, 240, 150, 150))
x = self.deconv1(x)
x = nn.functional.relu(x)
x = self.deconv2(x)
x = nn.functional.relu(x)
return x
net = Net()
input_shape = [1, 120, 5, 600, 600]
x = paddle.rand(input_shape, dtype='float32')
output = net(x)
print(output.shape)
```
输出是 [1, 120, 5, 600, 600] 的 tensor,符合输入要求。
阅读全文