with open('your_file_path.txt', 'r') as file: data = file.read()将数据读为tensor类型

时间: 2024-02-04 18:03:50 浏览: 24
您可以使用以下代码将读入的数据转换为PyTorch张量: ``` import torch with open('your_file_path.txt', 'r') as file: data = file.read() data = data.strip().split() # split the data into a list of strings tensor_data = torch.tensor([int(d) for d in data]) # convert the list to a PyTorch tensor ``` 请注意,此代码假设文件中的数据已经是数字,每个数字之间使用空格分隔。如果数据以其他格式存在,请根据需要修改代码。
相关问题

这是对单个文件进行预测“import os import json import torch from PIL import Image from torchvision import transforms import matplotlib.pyplot as plt from model import convnext_tiny as create_model def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print(f"using {device} device.") num_classes = 5 img_size = 224 data_transform = transforms.Compose( [transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image img_path = "../tulip.jpg" assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) plt.imshow(img) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model_weight_path = "./weights/best_model.pth" model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() print_res = "class: {} prob: {:.3}".format(class_indict[str(predict_cla)], predict[predict_cla].numpy()) plt.title(print_res) for i in range(len(predict)): print("class: {:10} prob: {:.3}".format(class_indict[str(i)], predict[i].numpy())) plt.show() if __name__ == '__main__': main()”,改为对指定文件夹下的左右文件进行预测,并绘制混淆矩阵

好的,你的问题是如何将上述代码修改为对指定文件夹下的所有文件进行预测,并绘制混淆矩阵。 要实现这个功能,你需要进行以下几个步骤: 1. 导入必要的包: ```python import os import json import torch from PIL import Image from torchvision import transforms from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import numpy as np from model import convnext_tiny as create_model ``` 2. 定义函数 `predict_folder`,用于对指定文件夹下的所有文件进行预测: ```python def predict_folder(folder_path, model_weight_path, json_path, img_size, num_classes, device): data_transform = transforms.Compose([ transforms.Resize(int(img_size * 1.14)), transforms.CenterCrop(img_size), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # read class_indict with open(json_path, "r") as f: class_indict = json.load(f) # create model model = create_model(num_classes=num_classes).to(device) # load model weights model.load_state_dict(torch.load(model_weight_path, map_location=device)) model.eval() y_true = [] y_pred = [] for root, dirs, files in os.walk(folder_path): for file in files: img_path = os.path.join(root, file) assert os.path.exists(img_path), "file: '{}' dose not exist.".format(img_path) img = Image.open(img_path) # [N, C, H, W] img = data_transform(img) # expand batch dimension img = torch.unsqueeze(img, dim=0) with torch.no_grad(): # predict class output = torch.squeeze(model(img.to(device))).cpu() predict = torch.softmax(output, dim=0) predict_cla = torch.argmax(predict).numpy() y_true.append(class_indict[os.path.basename(root)]) y_pred.append(predict_cla) return y_true, y_pred ``` 这个函数接受五个参数: - `folder_path`:要预测的文件夹路径。 - `model_weight_path`:模型权重文件路径。 - `json_path`:类别标签文件路径。 - `img_size`:输入图片的大小。 - `num_classes`:分类器的类别数。 - `device`:设备类型。 函数会返回两个列表 `y_true` 和 `y_pred`,分别代表真实标签和预测标签。 3. 加载类别标签: ```python json_path = './class_indices.json' assert os.path.exists(json_path), "file: '{}' dose not exist.".format(json_path) with open(json_path, "r") as f: class_indict = json.load(f) ``` 4. 调用 `predict_folder` 函数进行预测: ```python folder_path = './test' assert os.path.exists(folder_path), "folder: '{}' dose not exist.".format(folder_path) y_true, y_pred = predict_folder(folder_path, "./weights/best_model.pth", json_path, 224, 5, device) ``` 这里假设要预测的文件夹路径为 `./test`,模型权重文件路径为 `./weights/best_model.pth`,输入图片大小为 224,分类器的类别数为 5。 5. 绘制混淆矩阵: ```python cm = confusion_matrix(y_true, y_pred) fig, ax = plt.subplots() im = ax.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) ax.figure.colorbar(im, ax=ax) ax.set(xticks=np.arange(cm.shape[1]), yticks=np.arange(cm.shape[0]), xticklabels=list(class_indict.values()), yticklabels=list(class_indict.values()), title='Confusion matrix', ylabel='True label', xlabel='Predicted label') plt.setp(ax.get_xticklabels(), rotation=45, ha="right", rotation_mode="anchor") fmt = 'd' thresh = cm.max() / 2. for i in range(cm.shape[0]): for j in range(cm.shape[1]): ax.text(j, i, format(cm[i, j], fmt), ha="center", va="center", color="white" if cm[i, j] > thresh else "black") fig.tight_layout() plt.show() ``` 这里使用了 `sklearn.metrics` 中的 `confusion_matrix` 函数进行混淆矩阵的计算。然后使用 `matplotlib` 绘制混淆矩阵图像。

yolov1的软件代码解读 class VOCDataset(torch.utils.data.Dataset): def __init__(self, csv_file, img_dir, label_dir, S=7, B=2, C=20, transform=None): self.annotations = pd.read_csv(csv_file) self.img_dir = img_dir self.label_dir = label_

dir self.S = S # S: 每个cell预测的边界框数量 self.B = B # B: 每个边界框预测的坐标数 self.C = C # C: 物体类别数 self.transform = transform def __len__(self): return len(self.annotations) def __getitem__(self, index): label_path = os.path.join(self.label_dir, self.annotations.iloc[index, 1]) boxes = [] with open(label_path) as f: for label in f.readlines(): class_label, x, y, width, height = [float(x) if float(x) != int(float(x)) else int(x) for x in label.replace("\n", "").split()] boxes.append([class_label, x, y, width, height]) img_path = os.path.join(self.img_dir, self.annotations.iloc[index, 0]) image = Image.open(img_path) boxes = torch.tensor(boxes) if self.transform: image, boxes = self.transform(image, boxes) label_matrix = torch.zeros((self.S, self.S, self.C + 5 * self.B)) for box in boxes: class_label, x, y, width, height = box class_label = int(class_label) # i,j represents the cell row and cell column i, j = int(self.S * y), int(self.S * x) x_cell, y_cell = self.S * x - j, self.S * y - i # width and height of cell width_cell, height_cell = (width * self.S, height * self.S) if label_matrix[i, j, 20] == 0: # Set that there exists an object # Coordinates of bounding box box_coordinates = torch.tensor([x_cell, y_cell, width_cell, height_cell]) label_matrix[i, j, 20:25] = box_coordinates # Set the class label_matrix[i, j, class_label] = 1 # Set no-object confidence to 0 label_matrix[i, j, 25:] = torch.tensor([0] * 5) return image, label_matrix 这是一个 PyTorch 中的数据集类,用于加载 Pascal VOC 数据集的图片和标签。在 `__init__` 方法中,我们读取了 CSV 文件,设置了图片和标签的路径,以及每个 cell 预测的边界框数、每个边界框预测的坐标数和物体类别数。在 `__getitem__` 方法中,我们首先读取了标签文件,解析出每个边界框的类别、坐标和大小,然后加载对应的图片,对图片和标签进行了预处理,并最终返回图片和标签矩阵。其中,标签矩阵的大小为 `(S, S, C + 5B)`,其中 `S` 表示每个 cell 的大小,`C` 表示物体类别数,`B` 表示每个边界框预测的坐标数,这里为 4 个坐标值和 1 个置信度值。在标签矩阵中,每个 cell 中包含了表示是否存在物体的置信度值和对应边界框的坐标和类别信息。

相关推荐

给下面这段代码每行注释import os import json import torch from PIL import Image from torchvision import transforms from model import resnet34 def main(): device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") data_transform = transforms.Compose( [transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])]) # load image # 指向需要遍历预测的图像文件夹 imgs_root = "../dataset/val" assert os.path.exists(imgs_root), f"file: '{imgs_root}' dose not exist." # 读取指定文件夹下所有jpg图像路径 img_path_list = [os.path.join(imgs_root, i) for i in os.listdir(imgs_root) if i.endswith(".jpg")] # read class_indict json_path = './class_indices.json' assert os.path.exists(json_path), f"file: '{json_path}' dose not exist." json_file = open(json_path, "r") class_indict = json.load(json_file) # create model model = resnet34(num_classes=16).to(device) # load model weights weights_path = "./newresNet34.pth" assert os.path.exists(weights_path), f"file: '{weights_path}' dose not exist." model.load_state_dict(torch.load(weights_path, map_location=device)) # prediction model.eval() batch_size = 8 # 每次预测时将多少张图片打包成一个batch with torch.no_grad(): for ids in range(0, len(img_path_list) // batch_size): img_list = [] for img_path in img_path_list[ids * batch_size: (ids + 1) * batch_size]: assert os.path.exists(img_path), f"file: '{img_path}' dose not exist." img = Image.open(img_path) img = data_transform(img) img_list.append(img) # batch img # 将img_list列表中的所有图像打包成一个batch batch_img = torch.stack(img_list, dim=0) # predict class output = model(batch_img.to(device)).cpu() predict = torch.softmax(output, dim=1) probs, classes = torch.max(predict, dim=1) for idx, (pro, cla) in enumerate(zip(probs, classes)): print("image: {} class: {} prob: {:.3}".format(img_path_list[ids * batch_size + idx], class_indict[str(cla.numpy())], pro.numpy())) if __name__ == '__main__': main()

最新推荐

recommend-type

智能制造的数字化工厂规划qytp.pptx

智能制造的数字化工厂规划qytp.pptx
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

帮我实现在Androidstudio调用chapgpt并提供源码

首先,你需要运行一个ChitGPT的服务器,然后通过Android应用程序与该服务器进行通信。以下是一个简单的Android应用程序示例,可以与ChitGPT进行通信: 1. 首先,在Android Studio中创建一个新的项目,并添加以下依赖项: ``` implementation 'com.squareup.okhttp3:okhttp:4.9.0' implementation 'com.google.code.gson:gson:2.8.6' ``` 2. 创建一个新的Java类,用于与ChitGPT服务器通信。以下是一个简单的实现: ```java import com.
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。