生成对抗网络python实现手写体数字识别
时间: 2023-09-24 15:05:48 浏览: 164
生成对抗网络(GAN)是一种强大的深度学习技术,可以用于许多应用,包括手写体数字识别。在这里,我将向你展示如何使用Python实现手写体数字识别GAN。
首先,需要安装必要的库,包括TensorFlow和Keras。可以使用以下命令安装它们:
```
pip install tensorflow
pip install keras
```
接下来,我们需要准备MNIST数据集。可以使用以下代码加载数据集:
```python
from keras.datasets import mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
```
现在,我们将创建两个神经网络 - 一个生成器和一个判别器。生成器将随机噪声作为输入并生成手写数字图像,而判别器将接受手写数字图像并输出它们的真假。
```python
from keras.models import Sequential
from keras.layers import Dense, Flatten, Reshape, Dropout
from keras.layers.convolutional import Conv2DTranspose, Conv2D
from keras.layers.normalization import BatchNormalization
from keras.layers.advanced_activations import LeakyReLU
def create_generator():
generator = Sequential()
generator.add(Dense(128 * 7 * 7, input_dim=100, activation=LeakyReLU(0.2)))
generator.add(Reshape((7, 7, 128)))
generator.add(Conv2DTranspose(64, (3,3), strides=(2,2), padding='same', activation=LeakyReLU(0.2)))
generator.add(BatchNormalization())
generator.add(Conv2DTranspose(1, (3,3), strides=(2,2), padding='same', activation='tanh'))
return generator
def create_discriminator():
discriminator = Sequential()
discriminator.add(Conv2D(64, (3,3), padding='same', input_shape=(28,28,1)))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.25))
discriminator.add(Conv2D(128, (3,3), strides=(2,2), padding='same'))
discriminator.add(LeakyReLU(0.2))
discriminator.add(Dropout(0.25))
discriminator.add(Flatten())
discriminator.add(Dense(1, activation='sigmoid'))
return discriminator
generator = create_generator()
discriminator = create_discriminator()
```
现在,我们将定义GAN模型。我们将训练生成器和判别器,以便它们可以通过相互竞争的方式共同学习并提高性能。
```python
from keras.optimizers import Adam
def create_gan(generator, discriminator):
discriminator.trainable = False
gan = Sequential()
gan.add(generator)
gan.add(discriminator)
gan.compile(loss='binary_crossentropy', optimizer=Adam(lr=0.0002, beta_1=0.5))
return gan
gan = create_gan(generator, discriminator)
```
现在我们将定义训练循环:
```python
import numpy as np
import matplotlib.pyplot as plt
def train(generator, discriminator, gan, x_train, epochs=50, batch_size=128):
# Rescale -1 to 1
x_train = x_train / 127.5 - 1.
x_train = np.expand_dims(x_train, axis=3)
real = np.ones((batch_size, 1))
fake = np.zeros((batch_size, 1))
for epoch in range(epochs):
# Train discriminator
idx = np.random.randint(0, x_train.shape[0], batch_size)
real_imgs = x_train[idx]
noise = np.random.normal(0, 1, (batch_size, 100))
fake_imgs = generator.predict(noise)
d_loss_real = discriminator.train_on_batch(real_imgs, real)
d_loss_fake = discriminator.train_on_batch(fake_imgs, fake)
d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
# Train generator
noise = np.random.normal(0, 1, (batch_size, 100))
g_loss = gan.train_on_batch(noise, real)
# Plot the progress
print("Epoch {}, Discriminator Loss: {}, Generator Loss: {}".format(epoch, d_loss, g_loss))
# Generate some digits to check the progress
if epoch % 10 == 0:
noise = np.random.normal(0, 1, (25, 100))
gen_imgs = generator.predict(noise)
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(5, 5)
cnt = 0
for i in range(5):
for j in range(5):
axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
plt.show()
train(generator, discriminator, gan, x_train, epochs=1000, batch_size=128)
```
在训练之后,我们可以使用生成器来生成一些手写数字图像:
```python
noise = np.random.normal(0, 1, (25, 100))
gen_imgs = generator.predict(noise)
gen_imgs = 0.5 * gen_imgs + 0.5
fig, axs = plt.subplots(5, 5)
cnt = 0
for i in range(5):
for j in range(5):
axs[i,j].imshow(gen_imgs[cnt,:,:,0], cmap='gray')
axs[i,j].axis('off')
cnt += 1
plt.show()
```
这就是用Python实现手写体数字识别GAN的方法。
阅读全文
相关推荐

















