润色以下语句:Storm是专门流处理框架。而Apache Flink和Apache Spark则都可以处理。其实从纯正的角度来看,只有Flink两者都可以处理,虽然Spark Stream都可以处理,但是从设计的原理来看,Spark Stream并不是正真的流处理框架。因为Spark是将待处理的出具通过micro-batch进行细粒度切割,从而多个任务同时计算处理。给用户的感知就好像实时处理计算一样。 为什么Flink就可以做到正真的流处理和批处理呢?这是因为Flink有一个处理时间的阈值的设置。当阈值为0就是流处理,不是0就是批处理。让我们可以灵活的对数据根据实际场景来处理。 Apache Flink是一个面向分布式数据流处理和批量数据处理的开源计算平台。
时间: 2023-06-02 18:06:28 浏览: 107
Storm是一种专门用于流处理的框架,而Apache Flink和Apache Spark也可以处理流数据。然而,从严格的角度来讲,只有Flink既可以处理流数据又可以处理批量数据,尽管Spark也可以处理流数据,但是从其设计原理来看,Spark Stream并非真正的流处理框架。这是因为Spark通过将待处理的输出分为若干个微批次来实现细粒度切割,从而同时进行多个任务的计算处理。虽然对于用户来说,它的体验就像实时处理一样。而Flink则通过设置处理时间阈值来实现灵活地对数据进行实际场景下的处理。Apache Flink是一款开源计算平台,专注于分布式数据流处理和批量数据处理。
相关问题
apache hadoop部署(四):hive/hbase/storm/spark/flink配置
这篇文章主要介绍了如何配置Apache Hadoop的一些关键组件,包括Hive、HBase、Storm、Spark和Flink。这些组件都是大数据处理中非常重要的工具,可以帮助用户更好地管理和分析海量数据。在配置过程中,需要注意一些细节,比如版本兼容性、环境变量设置、配置文件修改等等。只有正确地配置这些组件,才能让Hadoop集群发挥最大的性能和效益。
阅读全文