num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别) num_dim = size(res, 2) - 1; % 特征维度 num_res = size(res, 1); % 样本数(每一行,是一个样本) num_size = 0.7; % 训练集占数据集的比例 res = res(randperm(num_res), :); % 打乱数据集(不打乱数据时,注释该行) flag_conusion = 1;
时间: 2023-06-17 15:05:21 浏览: 251
这段代码主要是用来准备数据集用于训练机器学习模型的。其中,num_class 表示数据集中类别的数量,num_dim 表示数据集中每个样本的特征维度,num_res 表示数据集中样本的数量,num_size 表示训练集所占的比例。这段代码还将数据集打乱,以便更好地训练模型。最后,flag_conusion 变量可能是用来控制是否显示混淆矩阵的。
相关问题
解释下段代码%% 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行 %% 读取数据 res = xlsread('数据集.xlsx'); %% 划分训练集和测试集% P_train = res(1: 270, 1: 12)'; T_train = res(1: 270, 13)'; M = size(P_train, 2); P_test = res(271: end, 1: 12)'; T_test = res(271: end, 13)'; N = size(P_test, 2); f_ = size(P_train, 1); % 特征维度 num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别) %% 数据转置 % P_train = P_train'; P_test = P_test'; % T_train = T_train'; T_test = T_test'; %% 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input ); t_train = T_train; t_test = T_test ; %% 转置以适应模型 p_train = p_train'; p_test = p_test'; t_train = t_train'; t_test = t_test'; %% 参数初始化 pop=5; %种群数量 Max_iter=20; % 设定最大迭代次数 dim = 2;% 维度为2,即优化两个超参数 lb = [1,1];%下边界 ub = [10,f_];%上边界 fobj = @(x) fun(x, p_train, t_train); [Best_score,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj); %开始优化 %% 提取最优参数 n_trees = round(Best_pos(1)); n_layer = round(Best_pos(2)); %% 创建模型 model = classRF_train(p_train, t_train, n_trees, n_layer); importance = model.importance; % 特征的重要性 %% 仿真测试 [T_sim1, Vote1] = classRF_predict(p_train, model); [T_sim2, Vote2] = classRF_predict(p_test , model); %% 性能评价 error1 = sum((T_sim1' == T_train)) / M * 100 ; error2 = sum((T_sim2' == T_test)) / N * 100 ;
这段代码主要是一个机器学习中的分类问题的例子,它的主要任务是对一个数据集进行训练和测试,以建立一个分类模型,并对模型的性能进行评价。下面是代码的具体解释:
1. `% % 清空环境变量 warning off % 关闭报警信息 close all % 关闭开启的图窗 clear % 清空变量 clc % 清空命令行`:这部分代码用于清空 MATLAB 的环境变量、关闭图窗、清空变量以及清空命令行,以确保开始时的环境是干净的。
2. `%% 读取数据 res = xlsread('数据集.xlsx');`:这部分代码用于读取一个名为“数据集.xlsx”的 Excel 文件中的数据,并将其存储在一个名为“res”的矩阵中。
3. `%% 划分训练集和测试集 P_train = res(1: 270, 1: 12)'; T_train = res(1: 270, 13)'; M = size(P_train, 2); P_test = res(271: end, 1: 12)'; T_test = res(271: end, 13)'; N = size(P_test, 2);`:这部分代码将读取的数据集划分为训练集和测试集,其中训练集包含前270行数据,测试集包含剩下的数据。训练集中的前12列是输入特征,第13列是输出标签。这部分代码还计算了训练集和测试集的大小,用于后面的模型训练和测试。
4. `f_ = size(P_train, 1); % 特征维度 num_class = length(unique(res(:, end))); % 类别数(Excel最后一列放类别)`:这部分代码计算了输入特征的维度和输出标签的类别数,以便后面使用。
5. `% % 数据转置 P_train = P_train'; P_test = P_test'; % T_train = T_train'; T_test = T_test';`:这部分代码将训练集和测试集中的输入特征和输出标签进行了转置,以适应后面模型训练和测试的需要。
6. `% % 数据归一化 [p_train, ps_input] = mapminmax(P_train, 0, 1); p_test = mapminmax('apply', P_test, ps_input ); t_train = T_train; t_test = T_test ;`:这部分代码对训练集和测试集中的输入特征进行了归一化处理,以使得不同特征之间的数值范围变得相似。这里使用了 mapminmax 函数进行归一化处理。
7. `% % 参数初始化 pop=5; % 种群数量 Max_iter=20; % 设定最大迭代次数 dim = 2;% 维度为2,即优化两个超参数 lb = [1,1];%下边界 ub = [10,f_];%上边界 fobj = @(x) fun(x, p_train, t_train); [Best_score,Best_pos,curve]=WOA(pop,Max_iter,lb,ub,dim,fobj); %开始优化`:这部分代码是对采用 WOA(鲸鱼优化算法)进行超参数优化的过程。其中,pop 表示种群数量,Max_iter 表示最大迭代次数,dim 表示超参数的维度,lb 和 ub 分别表示超参数的上下界,fobj 表示优化的目标函数,Best_score 和 Best_pos 分别表示优化的最佳得分和最佳位置,curve 表示迭代过程中的得分曲线。
8. `% % 提取最优参数 n_trees = round(Best_pos(1)); n_layer = round(Best_pos(2));`:这部分代码将优化得到的超参数提取出来,用于后面的模型训练。
9. `% % 创建模型 model = classRF_train(p_train, t_train, n_trees, n_layer); importance = model.importance; % 特征的重要性`:这部分代码根据训练集和优化得到的超参数,创建了随机森林(Random Forest)分类模型,并计算了特征的重要性。
10. `% % 仿真测试 [T_sim1, Vote1] = classRF_predict(p_train, model); [T_sim2, Vote2] = classRF_predict(p_test , model);`:这部分代码对训练集和测试集进行了模型仿真测试,其中 T_sim1 和 T_sim2 分别表示训练集和测试集的预测结果,Vote1 和 Vote2 分别表示训练集和测试集中每个样本在随机森林中的得票数。
11. `% % 性能评价 error1 = sum((T_sim1' == T_train)) / M * 100 ; error2 = sum((T_sim2' == T_test)) / N * 100 ;`:这部分代码用于计算模型的性能评价指标,其中 error1 和 error2 分别表示训练集和测试集的分类准确率,即预测正确的样本数占总样本数的百分比。
解释这段代码:clear clc warning off; path = pwd; addpath(genpath(path)); dataName{1} = 'flower17'; for name = 1 load(['./',dataName{name},'_Kmatrix']); Y(Y==-1)=2; numclass = length(unique(Y)); numker = size(KH,3); num = size(KH,1); KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH); % KH(KH<0) = 0; options.seuildiffsigma=1e-4; % stopping criterion for weight variation %------------------------------------------------------ % Setting some numerical parameters %------------------------------------------------------ options.goldensearch_deltmax=1e-1; % initial precision of golden section search options.numericalprecision=1e-16; % numerical precision weights below this value % are set to zero %------------------------------------------------------ % some algorithms paramaters %------------------------------------------------------ options.firstbasevariable='first'; % tie breaking method for choosing the base % variable in the reduced gradient method options.nbitermax=500; % maximal number of iteration options.seuil=0; % forcing to zero weights lower than this options.seuilitermax=10; % value, for iterations lower than this one options.miniter=0; % minimal number of iterations options.threshold = 1e-4; % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% qnorm = 2; [S,Sigma,obj] = graph_minmax(KH, options); S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D; [H,~] = eigs(L, numclass, 'LA'); res= myNMIACC(H,Y,numclass); disp(res); end
这段代码主要是用于处理图像分类数据,并使用图最小最大化算法进行图像分类。下面是对代码的解释:
1. `clear clc warning off;`: 清空命令行窗口并关闭警告信息;
2. `path = pwd; addpath(genpath(path));`: 将当前路径及其子文件夹添加到MATLAB搜索路径中;
3. `dataName{1} = 'flower17';`: 设置图像数据集的名称,此处为flower17;
4. `for name = 1`: 循环遍历数据集中的每个图像;
5. `load(['./',dataName{name},'_Kmatrix']);`: 加载预处理后的图像数据,其中_Kmatrix是图像的相似性矩阵,保存在.mat文件中;
6. `Y(Y==-1)=2;`: 将标签中的-1替换为2,以便后续处理;
7. `numclass = length(unique(Y));`: 计算图像数据集中的类别数;
8. `numker = size(KH,3); num = size(KH,1);`: 计算图像相似性矩阵的大小,其中numker为矩阵的张数,num为矩阵的行数;
9. `KH = remove_large(KH); KH = knorm(KH); KH = kcenter(KH); KH = divide_std(KH);`: 对图像相似性矩阵进行预处理,包括去除异常值、归一化、中心化、标准化等;
10. `options.seuildiffsigma=1e-4;`: 设置图最小最大化算法的参数,即权重变化的停止条件;
11. `options.goldensearch_deltmax=1e-1; options.numericalprecision=1e-16;`: 设置算法的一些数值参数,包括黄金分割法的初始精度和权重的数值精度;
12. `options.firstbasevariable='first'; options.nbitermax=500; options.seuil=0; options.seuilitermax=10; options.miniter=0;`: 设置算法的一些参数,包括选择基础变量的方法、最大迭代次数、权重阈值、迭代次数阈值等;
13. `options.threshold = 1e-4;`: 设置算法的收敛阈值;
14. `qnorm = 2;`: 计算范数,一般默认为2;
15. `[S,Sigma,obj] = graph_minmax(KH, options);`: 使用图最小最大化算法对图像相似性矩阵进行聚类,并返回聚类结果;
16. `S1 = (S + S') / 2; D = diag(1 ./ sqrt(sum(S1))); L = D * S1 * D;`: 将聚类结果转化为拉普拉斯矩阵,其中D为度矩阵,S1为对称邻接矩阵;
17. `[H,~] = eigs(L, numclass, 'LA');`: 对拉普拉斯矩阵进行特征值分解,获取特征向量;
18. `res= myNMIACC(H,Y,numclass);`: 计算分类精度;
19. `disp(res);`: 显示分类精度结果。
阅读全文