def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]
时间: 2024-04-27 16:22:28 浏览: 85
这段代码是PointNet++中的分割网络的前向传播函数,输入是点云数据,输出是点云的特征向量和坐标。具体来说,这个函数首先将输入的点云数据拆分成坐标和特征两个部分,然后利用SA模块(即Set Abstraction模块)对点云进行特征提取,得到一系列局部特征和坐标信息。接着,利用FP模块(即Feature Propagation模块)对局部特征进行融合,得到全局特征表示。最后,输出全局特征表示和对应的坐标信息。
具体来说,这个函数的过程如下:
1. 将输入的点云数据拆分成坐标和特征两个部分,存储在xyz和features中。
2. 对于每一个SA模块,利用该模块对局部特征进行提取,得到局部坐标信息li_xyz和局部特征向量li_features,将其存储在l_xyz和l_features中。
3. 对于每一个FP模块,利用该模块对局部特征进行融合,得到新的局部特征向量,更新l_features中的元素。
4. 返回全局特征向量l_features[0]和对应的坐标信息l_xyz[0]。
总的来说,这个函数的作用是将输入的点云数据转化为全局特征向量和对应的坐标信息,以便进行点云分割等任务。
相关问题
def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]这段代码中self.SA_modules被传入的参数个数取决于什么
self.SA_modules被传入的参数个数取决于SA_modules的定义,每个SA_module应该接受两个参数,即点云的坐标和特征。在forward方法中,对于每个SA_module,先取出当前的坐标和特征,然后调用SA_module进行处理,得到新的坐标和特征,将它们分别加入l_xyz和l_features中,作为下一个SA_module的输入。因此,SA_modules中有多少个模块,就需要传入多少组坐标和特征。
import torch import torch.nn as nn from pointnet2_lib.pointnet2.pointnet2_modules import PointnetFPModule, PointnetSAModuleMSG from lib.config import cfg def get_model(input_channels=6, use_xyz=True): return Pointnet2MSG(input_channels=input_channels, use_xyz=use_xyz) class Pointnet2MSG(nn.Module): def __init__(self, input_channels=6, use_xyz=True): super().__init__() self.SA_modules = nn.ModuleList() channel_in = input_channels skip_channel_list = [input_channels] for k in range(cfg.RPN.SA_CONFIG.NPOINTS.__len__()): mlps = cfg.RPN.SA_CONFIG.MLPS[k].copy() channel_out = 0 for idx in range(mlps.__len__()): mlps[idx] = [channel_in] + mlps[idx] channel_out += mlps[idx][-1] self.SA_modules.append( PointnetSAModuleMSG( npoint=cfg.RPN.SA_CONFIG.NPOINTS[k], radii=cfg.RPN.SA_CONFIG.RADIUS[k], nsamples=cfg.RPN.SA_CONFIG.NSAMPLE[k], mlps=mlps, use_xyz=use_xyz, bn=cfg.RPN.USE_BN ) ) skip_channel_list.append(channel_out) channel_in = channel_out self.FP_modules = nn.ModuleList() for k in range(cfg.RPN.FP_MLPS.__len__()): pre_channel = cfg.RPN.FP_MLPS[k + 1][-1] if k + 1 < len(cfg.RPN.FP_MLPS) else channel_out self.FP_modules.append( PointnetFPModule(mlp=[pre_channel + skip_channel_list[k]] + cfg.RPN.FP_MLPS[k]) ) def _break_up_pc(self, pc): xyz = pc[..., 0:3].contiguous() features = ( pc[..., 3:].transpose(1, 2).contiguous() if pc.size(-1) > 3 else None ) return xyz, features def forward(self, pointcloud: torch.cuda.FloatTensor): xyz, features = self._break_up_pc(pointcloud) l_xyz, l_features = [xyz], [features] for i in range(len(self.SA_modules)): li_xyz, li_features = self.SA_modules[i](l_xyz[i], l_features[i]) l_xyz.append(li_xyz) l_features.append(li_features) for i in range(-1, -(len(self.FP_modules) + 1), -1): l_features[i - 1] = self.FP_modules[i]( l_xyz[i - 1], l_xyz[i], l_features[i - 1], l_features[i] ) return l_xyz[0], l_features[0]
这是一个使用 PointNet++ 算法实现的模型,用于点云分类或物体检测任务。它包含了多个 SA(Sample and Aggregate)模块和 FP(Feature Propagation)模块,其中 SA 模块用于对点云进行子采样和特征聚合,FP 模块则用于将上一层的特征信息传递到下一层,并恢复采样前的点云密度。其中,SA 模块中的 MLPs(Multi-Layer Perceptrons)用于对点云特征进行非线性变换,FP 模块中的 MLPs 则用于对特征进行上采样和融合。整个模型的输入是点云数据,输出是点云的坐标和特征向量。
阅读全文