可以写出strassen矩阵乘法基于openmp的程序,并输出运行时间吗
时间: 2024-05-07 09:16:51 浏览: 190
当然可以,以下是Strassen矩阵乘法基于OpenMP的程序示例:
```
#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
void strassen(int n, double **a, double **b, double **c, int p) {
if (n <= p) { // perform regular matrix multiplication when n is small
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
for (int k = 0; k < n; k++) {
c[i][j] += a[i][k] * b[k][j];
}
}
}
return;
}
int m = n / 2;
double **a11, **a12, **a21, **a22, **b11, **b12, **b21, **b22;
double **s1, **s2, **s3, **s4, **s5, **s6, **s7, **s8, **s9, **s10;
double **p1, **p2, **p3, **p4, **p5, **p6, **p7;
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
a11 = (double **) malloc(m * sizeof(double *));
#pragma omp section
a12 = (double **) malloc(m * sizeof(double *));
#pragma omp section
a21 = (double **) malloc(m * sizeof(double *));
#pragma omp section
a22 = (double **) malloc(m * sizeof(double *));
#pragma omp section
b11 = (double **) malloc(m * sizeof(double *));
#pragma omp section
b12 = (double **) malloc(m * sizeof(double *));
#pragma omp section
b21 = (double **) malloc(m * sizeof(double *));
#pragma omp section
b22 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel for collapse(2) schedule(static) num_threads(8)
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
a11[i][j] = a[i][j];
a12[i][j] = a[i][j + m];
a21[i][j] = a[i + m][j];
a22[i][j] = a[i + m][j + m];
b11[i][j] = b[i][j];
b12[i][j] = b[i][j + m];
b21[i][j] = b[i + m][j];
b22[i][j] = b[i + m][j + m];
}
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
s1 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s2 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s3 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s4 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s5 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s6 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s7 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s8 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s9 = (double **) malloc(m * sizeof(double *));
#pragma omp section
s10 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
p1 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p2 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p3 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p4 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p5 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p6 = (double **) malloc(m * sizeof(double *));
#pragma omp section
p7 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
double **tmp1 = (double **) malloc(m * sizeof(double *));
#pragma omp section
double **tmp2 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
double **tmp3 = (double **) malloc(m * sizeof(double *));
#pragma omp section
double **tmp4 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
double **tmp5 = (double **) malloc(m * sizeof(double *));
#pragma omp section
double **tmp6 = (double **) malloc(m * sizeof(double *));
}
#pragma omp parallel sections num_threads(8)
{
#pragma omp section
double **tmp7 = (double **) malloc(m * sizeof(double *));
}
#pragma omp task
{
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
s1[i][j] = b12[i][j] - b22[i][j];
s2[i][j] = a11[i][j] + a12[i][j];
s3[i][j] = a21[i][j] + a22[i][j];
s4[i][j] = b21[i][j] - b11[i][j];
s5[i][j] = a11[i][j] + a22[i][j];
s6[i][j] = b11[i][j] + b22[i][j];
s7[i][j] = a12[i][j] - a22[i][j];
s8[i][j] = b21[i][j] + b22[i][j];
s9[i][j] = a11[i][j] - a21[i][j];
s10[i][j] = b11[i][j] + b12[i][j];
}
}
}
#pragma omp taskwait
#pragma omp task
{
strassen(m, a11, s1, tmp1, p);
}
#pragma omp task
{
strassen(m, s2, b22, tmp2, p);
}
#pragma omp task
{
strassen(m, s3, b11, tmp3, p);
}
#pragma omp task
{
strassen(m, a22, s4, tmp4, p);
}
#pragma omp task
{
strassen(m, s5, s6, tmp5, p);
}
#pragma omp task
{
strassen(m, s7, s8, tmp6, p);
}
#pragma omp task
{
strassen(m, s9, s10, tmp7, p);
}
#pragma omp taskwait
#pragma omp parallel for collapse(2) schedule(static) num_threads(8)
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
p1[i][j] = tmp5[i][j] + tmp4[i][j] - tmp2[i][j] + a22[i][j] * b22[i][j];
p2[i][j] = tmp1[i][j] + tmp2[i][j];
p3[i][j] = tmp3[i][j] + tmp4[i][j];
p4[i][j] = tmp5[i][j] + tmp1[i][j] - tmp3[i][j] - b11[i][j] * a11[i][j];
p5[i][j] = tmp5[i][j] + tmp1[i][j] - tmp3[i][j] + b22[i][j] * a22[i][j];
p6[i][j] = tmp7[i][j] + tmp5[i][j] + tmp6[i][j] + tmp2[i][j];
p7[i][j] = tmp6[i][j] + tmp4[i][j] - tmp8[i][j] + b12[i][j] * a21[i][j];
}
}
#pragma omp parallel for collapse(2) schedule(static) num_threads(8)
for (int i = 0; i < m; i++) {
for (int j = 0; j < m; j++) {
c[i][j] = p5[i][j] + p4[i][j] - p2[i][j] + p6[i][j];
c[i][j + m] = p1[i][j] + p2[i][j];
c[i + m][j] = p3[i][j] + p4[i][j];
c[i + m][j + m] = p5[i][j] + p1[i][j] - p3[i][j] + p7[i][j];
}
}
return;
}
int main() {
int n = 1024; // size of the matrices
int p = 32; // threshold for switching to regular matrix multiplication
double **a, **b, **c;
a = (double **) calloc(n, sizeof(double *));
b = (double **) calloc(n, sizeof(double *));
c = (double **) calloc(n, sizeof(double *));
for (int i = 0; i < n; i++) {
a[i] = (double *) calloc(n, sizeof(double));
b[i] = (double *) calloc(n, sizeof(double));
c[i] = (double *) calloc(n, sizeof(double));
}
// initialize matrices with random numbers
for (int i = 0; i < n; i++) {
for (int j = 0; j < n; j++) {
a[i][j] = (double) rand() / RAND_MAX;
b[i][j] = (double) rand() / RAND_MAX;
c[i][j] = 0.0;
}
}
double start_time = omp_get_wtime();
#pragma omp parallel
{
#pragma omp single
strassen(n, a, b, c, p); // call the strassen function
}
double end_time = omp_get_wtime();
printf("Time: %f seconds\n", end_time - start_time);
// free memory
for (int i = 0; i < n; i++) {
free(a[i]);
free(b[i]);
free(c[i]);
}
free(a);
free(b);
free(c);
return 0;
}
```
其中,p代表阈值,当矩阵大小小于等于p时,使用普通的矩阵乘法算法。该程序使用OpenMP来并行化计算,运行时间可通过输出start_time和end_time的差值得到。
阅读全文