基于python的手势识别项目代码
时间: 2023-08-27 15:11:50 浏览: 116
以下是一个基于Python和OpenCV的手势识别项目代码示例:
```python
import cv2
import numpy as np
import math
# 打开摄像头
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
# 翻转帧以使其更易于处理
frame = cv2.flip(frame, 1)
# 定义感兴趣区域(ROI)
roi = frame[100:400, 100:400]
# 应用高斯模糊
blur = cv2.GaussianBlur(roi, (5, 5), 0)
# 将帧转换为HSV颜色空间
hsv = cv2.cvtColor(blur, cv2.COLOR_BGR2HSV)
# 创建HSV颜色空间的掩码
lower_skin = np.array([0, 20, 70], dtype=np.uint8)
upper_skin = np.array([20, 255, 255], dtype=np.uint8)
mask = cv2.inRange(hsv, lower_skin, upper_skin)
# 应用形态学操作
kernel = np.ones((5, 5), np.uint8)
mask = cv2.dilate(mask, kernel, iterations=1)
mask = cv2.erode(mask, kernel, iterations=1)
# 找到轮廓
contours, hierarchy = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
# 获取最大轮廓
if len(contours) > 0:
max_contour = max(contours, key=cv2.contourArea)
# 如果最大轮廓的面积大于一定值,则认为手势识别成功
if cv2.contourArea(max_contour) > 10000:
# 找到手指指尖
hull = cv2.convexHull(max_contour, returnPoints=False)
defects = cv2.convexityDefects(max_contour, hull)
count_defects = 0
for i in range(defects.shape[0]):
s, e, f, d = defects[i, 0]
start = tuple(max_contour[s][0])
end = tuple(max_contour[e][0])
far = tuple(max_contour[f][0])
a = math.sqrt((end[0] - start[0]) ** 2 + (end[1] - start[1]) ** 2)
b = math.sqrt((far[0] - start[0]) ** 2 + (far[1] - start[1]) ** 2)
c = math.sqrt((end[0] - far[0]) ** 2 + (end[1] - far[1]) ** 2)
angle = math.acos((b ** 2 + c ** 2 - a ** 2) / (2 * b * c)) * 180 / math.pi
if angle <= 90:
count_defects += 1
cv2.circle(roi, far, 5, [0, 0, 255], -1)
if count_defects == 1:
cv2.putText(frame, "I am V", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
elif count_defects == 2:
cv2.putText(frame, "This is a bird", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
elif count_defects == 3:
cv2.putText(frame, "This is a three", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
elif count_defects == 4:
cv2.putText(frame, "This is a four", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
else:
cv2.putText(frame, "Hello World!!!", (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 255, 0), 2)
# 绘制轮廓和凸包
cv2.drawContours(roi, [max_contour], 0, (0, 255, 0), 2)
cv2.drawContours(roi, [hull], 0, (0, 0, 255), 3)
# 显示结果
cv2.imshow("Gesture Recognition", frame)
# 按下ESC键退出循环
if cv2.waitKey(1) == 27:
break
# 释放摄像头并销毁所有窗口
cap.release()
cv2.destroyAllWindows()
```
这个示例使用的是HSV颜色空间的掩码、轮廓和凸包的概念来识别手势。它首先将感兴趣区域(ROI)转换为HSV颜色空间,并创建一个掩码来过滤出肤色。然后,它对掩码应用形态学操作,并找到最大轮廓。接着,它通过凸包和凸缺陷来找到手指指尖,根据指尖的个数来识别手势。最后,它将结果显示在一个窗口中。
阅读全文