cnn卷积神经网络手写数字识别代码
时间: 2023-06-18 16:07:10 浏览: 136
卷积神经网络实现手写数字识别代码
5星 · 资源好评率100%
以下是一个基于CNN的手写数字识别代码,使用Keras框架和MNIST数据集:
```python
import keras
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
# 加载数据集
(x_train, y_train), (x_test, y_test) = mnist.load_data()
# 预处理数据集
x_train = x_train.reshape(x_train.shape[0], 28, 28, 1)
x_test = x_test.reshape(x_test.shape[0], 28, 28, 1)
input_shape = (28, 28, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
y_train = keras.utils.to_categorical(y_train, 10)
y_test = keras.utils.to_categorical(y_test, 10)
# 构建模型
model = Sequential()
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
# 编译模型
model.compile(loss=keras.losses.categorical_crossentropy,
optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
# 训练模型
model.fit(x_train, y_train,
batch_size=128,
epochs=12,
verbose=1,
validation_data=(x_test, y_test))
# 评估模型
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
```
这个模型包括了两个卷积层、一个池化层和两个全连接层,具有较高的准确率。
阅读全文