平方根容积卡尔曼滤波的公式
时间: 2023-11-06 14:30:43 浏览: 157
平方根容积卡尔曼滤波方法
4星 · 用户满意度95%
平方根容积卡尔曼滤波(Square Root Cubature Kalman Filter,SRCKF)的公式较为复杂,以下是其中的一部分:
预测步骤:
$$\hat{x}_{k+1|k} = f(\hat{x}_{k|k},u_k)+B_ku_k$$
$$\hat{y}_{k+1|k} = h(\hat{x}_{k+1|k})$$
$$F_{k+1} = \frac{\partial f}{\partial x}|_{\hat{x}_{k|k},u_k}$$
$$Q_{k+1} = G_kQ_kG_k^T+R_k$$
$$P_{k+1|k} = F_{k+1}P_{k|k}F_{k+1}^T+Q_{k+1}$$
其中,$\hat{x}_{k|k}$表示时刻$k$的状态估计值,$u_k$表示$k$时刻的输入,$f$和$h$为非线性函数,$B_k$为输入矩阵,$F_{k+1}$为状态转移矩阵,$Q_{k+1}$为过程噪声协方差矩阵,$G_k$为噪声影响矩阵,$R_k$为测量噪声协方差矩阵,$P_{k|k}$为状态估计协方差矩阵。
更新步骤:
$$K_{k+1} = P_{k+1|k}H_{k+1}^T(H_{k+1}P_{k+1|k}H_{k+1}^T+V_{k+1})^{-1}$$
$$\hat{x}_{k+1|k+1} = \hat{x}_{k+1|k}+K_{k+1}(y_{k+1}-\hat{y}_{k+1|k})$$
$$P_{k+1|k+1} = (I-K_{k+1}H_{k+1})P_{k+1|k}(I-K_{k+1}H_{k+1})^T+K_{k+1}V_{k+1}K_{k+1}^T$$
其中,$H_{k+1}$为测量转移矩阵,$V_{k+1}$为测量噪声协方差矩阵,$y_{k+1}$为第$k+1$时刻的测量值,$\hat{y}_{k+1|k}$为预测值,$K_{k+1}$为卡尔曼增益矩阵,$\hat{x}_{k+1|k+1}$为状态估计值,$P_{k+1|k+1}$为状态估计协方差矩阵。
阅读全文