bert pytorch 序列标注_手把手教你用Pytorch-Transformers——部分源码解读及相关说明(一)...
时间: 2023-06-23 21:08:31 浏览: 183
这篇文章讲解的是如何使用 Pytorch-Transformers 库进行序列标注任务,其中涉及到了部分源码解读和相关说明。Pytorch-Transformers 是一个针对自然语言处理任务的库,其中包含了多种预训练模型,包括 BERT、GPT-2、XLNet 等。这些预训练模型可以用来进行文本分类、序列标注、问答等多种自然语言处理任务。
在本文中,作者首先介绍了如何使用 Pytorch-Transformers 库加载预训练模型,然后讲解了如何进行序列标注任务。具体来说,作者使用了 CoNLL-2003 数据集进行实验,该数据集包含了英文的命名实体识别任务。作者使用了 BERT 进行训练,并结合了 CRF 来进行序列标注任务。最后,作者通过实验比较了使用 BERT 和使用传统的 BiLSTM-CRF 模型在 CoNLL-2003 数据集上的表现,结果表明 BERT 模型具有更好的性能。
整篇文章内容详实,包含了代码实现和相关说明,并且作者对于一些细节也进行了解释,非常适合入门 Pytorch-Transformers 库和序列标注任务。
相关问题
Pytorch_Bert_CasRel
### PyTorch Implementation of BERT-CasRel Model for Relation Extraction
The CasRel model is designed to address the challenges associated with document-level relation extraction, particularly focusing on capturing complex dependencies between entities within documents. This section explains how this can be implemented using PyTorch and integrates insights from various research findings.
#### Overview of BERT-CasRel Architecture
CasRel employs a cascaded tagging mechanism that allows simultaneous prediction of subject-object pairs while considering their contextual relationships[^1]. The core idea behind CasRel lies in its ability to jointly extract multiple relations by leveraging pre-trained language models like BERT, which excel at understanding deep semantic structures present in text data.
To implement such functionality effectively:
- **Model Definition**: Define the architecture where BERT serves as the backbone encoder responsible for generating rich embeddings representing input sequences.
- **Dataset Preparation**: Prepare datasets compatible with the expected format required by the defined model structure. Given that dataset design closely follows what the model expects as inputs/outputs, ensuring alignment here becomes crucial[^4].
Below demonstrates an example code snippet illustrating key components involved when implementing the BERT-CasRel model using PyTorch:
```python
import torch
from transformers import BertTokenizer, BertModel
class BertCasRel(torch.nn.Module):
def __init__(self, num_relations=53): # Example number of possible relations
super(BertCasRel, self).__init__()
self.bert = BertModel.from_pretrained('bert-base-chinese')
hidden_size = self.bert.config.hidden_size
# Subject tagger layers
self.subject_start_fc = torch.nn.Linear(hidden_size, 1)
self.subject_end_fc = torch.nn.Linear(hidden_size, 1)
# Object tagger layers per each type of relationship
self.object_taggers = torch.nn.ModuleList([
torch.nn.Sequential(
torch.nn.Linear(hidden_size, 2),
torch.nn.Softmax(dim=-1))
for _ in range(num_relations)])
def forward(self, token_ids, attention_mask=None):
outputs = self.bert(input_ids=token_ids, attention_mask=attention_mask)[0]
subj_starts_logits = self.subject_start_fc(outputs).squeeze(-1)
subj_ends_logits = self.subject_end_fc(outputs).squeeze(-1)
obj_tags_list = []
for object_tagger in self.object_taggers:
obj_tags = object_tagger(outputs)
obj_tags_list.append(obj_tags)
return {
'subj_starts': subj_starts_logits,
'subj_ends': subj_ends_logits,
'obj_tags': torch.stack(obj_tags_list, dim=1)}
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
# Dummy Input Data Creation
dummy_input_text = ["公司A收购了公司B"]
encoded_inputs = tokenizer(dummy_input_text, padding=True, truncation=True, max_length=128, return_tensors="pt")
model = BertCasRel()
output = model(**encoded_inputs)
print(output['subj_starts'].shape) # Shape should match batch size * sequence length
```
This implementation showcases defining both subject start/end predictors along with separate binary classifiers for identifying objects related through specific types of relations. By stacking these predictions across all potential relation categories, one obtains comprehensive annotations over entire texts.
怎么安装pytorch_pretrained_bert库
`pytorch_pretrained_bert` 库已被更新为 `transformers` 库,你需要使用以下命令安装:
```
pip install transformers
```
如果你需要安装旧版本的 `pytorch_pretrained_bert` 库,可以使用以下命令:
```
pip install pytorch_pretrained_bert
```
安装完成后,你就可以在 Python 中使用 `pytorch_pretrained_bert` 库了。
阅读全文
相关推荐
















