利用不同角度拍摄的特定场景图像,实现图像拼接,要求用C语言和OPENCV编程实现。
时间: 2023-11-27 19:49:56 浏览: 76
基于opencv实现的图像拼接
4星 · 用户满意度95%
实现图像拼接的基本思路是:
1. 读取多张图像并将其转换为灰度图像;
2. 检测图像中的特征点(如SIFT,SURF,ORB等算法);
3. 对所有图像中的特征点进行匹配,并使用RANSAC算法估计每对匹配点之间的变换关系(平移,旋转,缩放等);
4. 将所有图像根据估计的变换关系进行变换(如透视变换),并将它们拼接成一个大图像。
下面是利用C语言和OpenCV实现图像拼接的基本代码框架:
```c
#include <stdio.h>
#include <opencv2/opencv.hpp>
using namespace cv;
int main(int argc, char** argv )
{
// 读取图像
Mat img1 = imread("image1.jpg", IMREAD_GRAYSCALE);
Mat img2 = imread("image2.jpg", IMREAD_GRAYSCALE);
Mat img3 = imread("image3.jpg", IMREAD_GRAYSCALE);
// 检测特征点
Ptr<FeatureDetector> detector = ORB::create();
std::vector<KeyPoint> keypoints1, keypoints2, keypoints3;
detector->detect(img1, keypoints1);
detector->detect(img2, keypoints2);
detector->detect(img3, keypoints3);
// 特征点匹配
Ptr<DescriptorExtractor> extractor = ORB::create();
Mat descriptors1, descriptors2, descriptors3;
extractor->compute(img1, keypoints1, descriptors1);
extractor->compute(img2, keypoints2, descriptors2);
extractor->compute(img3, keypoints3, descriptors3);
Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
std::vector<DMatch> matches12, matches23;
matcher->match(descriptors1, descriptors2, matches12);
matcher->match(descriptors2, descriptors3, matches23);
// 计算变换关系
std::vector<Point2f> points1, points2, points3;
for (int i = 0; i < matches12.size(); i++) {
points1.push_back(keypoints1[matches12[i].queryIdx].pt);
points2.push_back(keypoints2[matches12[i].trainIdx].pt);
}
for (int i = 0; i < matches23.size(); i++) {
points2.push_back(keypoints2[matches23[i].queryIdx].pt);
points3.push_back(keypoints3[matches23[i].trainIdx].pt);
}
Mat H12 = findHomography(points1, points2, RANSAC);
Mat H23 = findHomography(points2, points3, RANSAC);
// 变换图像并拼接
Mat result;
warpPerspective(img1, result, H12, Size(img1.cols + img2.cols, img1.rows));
Mat roi(result, Rect(img1.cols, 0, img2.cols, img2.rows));
img2.copyTo(roi);
warpPerspective(result, result, H23, Size(result.cols + img3.cols - img2.cols, img3.rows));
Mat roi2(result, Rect(img1.cols + img2.cols, 0, img3.cols, img3.rows));
img3.copyTo(roi2);
// 显示结果
namedWindow("Result", WINDOW_NORMAL);
imshow("Result", result);
waitKey(0);
return 0;
}
```
需要注意的是,本示例代码仅为参考,实际应用中还需要进行参数调优和异常处理。
阅读全文