val desc_df = data_df.select(data_df("desc"))
时间: 2024-04-26 10:23:36 浏览: 88
这段代码是使用Spark DataFrame API从一个名为`data_df`的DataFrame中选择一个名为`desc`的列,并将结果存储到一个名为`desc_df`的DataFrame中。
具体来说,`data_df("desc")`是一个`Column`对象,它代表了`data_df`中的`desc`列。然后,我们使用`select`方法选择了这个`Column`对象,并将结果存储到一个新的DataFrame中。
可以注意到,这个代码并没有对`desc`列中的数据进行任何处理,仅仅是选择了这个列。如果你想对`desc`列中的数据进行操作,你需要使用DataFrame API中的其他方法,如`split`、`explode`、`groupBy`和`count`等方法。
希望这个回答能够回答你的问题。
相关问题
data_df.select(data_df("written_by"),data_df("imdb_rating").cast("float")) print(writer_df.show()) val writer_avgdata = writer_df.groupBy("written_by"). mean("imdb_rating").orderBy($"avg(imdb_rating)".desc).toDF()
这段代码的作用是选取DataFrame对象中的written_by和imdb_rating列,并将imdb_rating列的数据类型转换为float类型,然后按照written_by列进行分组,计算imdb_rating列的平均值,并按照平均值进行降序排序,最后将结果转换为DataFrame对象。可以使用以下代码来运行:
```scala
import org.apache.spark.sql.{SparkSession, DataFrame}
import org.apache.spark.sql.functions._
val spark = SparkSession.builder()
.appName("Aggregate IMDb Ratings")
.getOrCreate()
val csvPath = "hdfs://path/to/your/csv/file.csv"
val df: DataFrame = spark.read
.option("header", "true")
.option("inferSchema", "true")
.csv(csvPath)
val writer_df = df.select(df("written_by"), df("imdb_rating").cast("float"))
writer_df.show()
val writer_avgdata = writer_df.groupBy("written_by")
.mean("imdb_rating")
.orderBy($"avg(imdb_rating)".desc)
.toDF()
writer_avgdata.show()
```
在这里,我们首先使用上一个示例中的代码来读取CSV文件并创建DataFrame对象。接下来,我们使用DataFrame API的select方法来选取written_by和imdb_rating这两列,并使用cast方法将imdb_rating列的数据类型转换为float类型。然后,我们使用DataFrame API的groupBy和mean方法来按written_by列进行分组,并计算imdb_rating列的平均值。接下来,我们使用orderBy方法来按照平均值进行降序排序。最后,我们使用toDF方法将结果转换为DataFrame对象,并将其分配给变量writer_avgdata中,并使用DataFrame API的show方法来查看结果。
import org.apache.spark.SparkContext import org.apache.spark.SparkConf import org.apache.spark.rdd.RDD import org.apache.spark.sql._ import org.apache.spark.sql.functions._ class Sale { } object Sale { case class Sale(cardId:String,productId:Int,quantity:Int,money:Double) def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local") val sc = new SparkContext(conf) sc.setLogLevel("ERROR") val sqlContext = new SQLContext(sc) // load data val data = sc.textFile(args(0)) // parse data val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0), arr(1).toInt, arr(2).toInt, arr(3).toDouble)) import sqlContext.implicits._ val df = salesRDD.toDF() val nameMoneyDF = df.select("productId","money","quantity") nameMoneyDF.show(5) val totalSales = nameMoneyDF.groupBy("productId").sum("quantity") //totalSales.show(5) val topSales = totalSales.select(totalSales("productId"),totalSales("sum(quantity)").as("Totalquantity")) .orderBy(desc("Totalquantity")) topSales.show(5) val totalbuy = df.groupBy("cardId").sum("quantity") //totalbuy.show(5) val topbuy = totalbuy.select(totalbuy("cardId"),totalbuy("sum(quantity)").as("Totalquantity")) .orderBy(desc("Totalquantity")) topbuy.show(5) val Oneproduct:Dataset[Row]= topSales.select("productId","Totalquantity").filter(row=>row.getAs[String]("productId") == 230010) Oneproduct.show() sc.stop() }}帮我写个注释
```scala
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
class Sale { }
object Sale {
case class Sale(cardId:String,productId:Int,quantity:Int,money:Double)
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("ERROR")
val sqlContext = new SQLContext(sc)
// load data
val data = sc.textFile(args(0))
// parse data
val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0), arr(1).toInt, arr(2).toInt, arr(3).toDouble))
import sqlContext.implicits._
val df = salesRDD.toDF()
// select columns and show top 5 rows
val nameMoneyDF = df.select("productId","money","quantity")
nameMoneyDF.show(5)
// group by productId and sum the quantity, then show top 5 products with highest sales
val totalSales = nameMoneyDF.groupBy("productId").sum("quantity")
val topSales = totalSales.select(totalSales("productId"),totalSales("sum(quantity)").as("Totalquantity")).orderBy(desc("Totalquantity"))
topSales.show(5)
// group by cardId and sum the quantity, then show top 5 customers with highest purchase quantity
val totalbuy = df.groupBy("cardId").sum("quantity")
val topbuy = totalbuy.select(totalbuy("cardId"),totalbuy("sum(quantity)").as("Totalquantity")).orderBy(desc("Totalquantity"))
topbuy.show(5)
// select rows for one specific product (productId = 230010) and show the result
val Oneproduct:Dataset[Row]= topSales.select("productId","Totalquantity").filter(row=>row.getAs[String]("productId") == 230010)
Oneproduct.show()
sc.stop()
}
}
```
注释如下:
```scala
// 导入Spark相关的库
import org.apache.spark.SparkContext
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
import org.apache.spark.sql._
import org.apache.spark.sql.functions._
// 定义Sale类
class Sale { }
// Sale伴生对象
object Sale {
// 定义Sale类的属性
case class Sale(cardId:String,productId:Int,quantity:Int,money:Double)
def main(args: Array[String]): Unit = {
// 设置Spark的配置信息,并创建SparkContext
val conf = new SparkConf().setAppName("Pharmacy Sales Analysis").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("ERROR")
val sqlContext = new SQLContext(sc)
// 加载数据
val data = sc.textFile(args(0))
// 解析数据并创建RDD
val salesRDD: RDD[Sale] = data.map(line => line.split(" ")).map(arr => Sale(arr(0), arr(1).toInt, arr(2).toInt, arr(3).toDouble))
// 将RDD转换为DataFrame
import sqlContext.implicits._
val df = salesRDD.toDF()
// 选择需要的列并展示前5行
val nameMoneyDF = df.select("productId","money","quantity")
nameMoneyDF.show(5)
// 按productId分组并计算销售量,然后展示销售量最高的5个商品
val totalSales = nameMoneyDF.groupBy("productId").sum("quantity")
val topSales = totalSales.select(totalSales("productId"),totalSales("sum(quantity)").as("Totalquantity")).orderBy(desc("Totalquantity"))
topSales.show(5)
// 按cardId分组并计算购买量,然后展示购买量最高的5个客户
val totalbuy = df.groupBy("cardId").sum("quantity")
val topbuy = totalbuy.select(totalbuy("cardId"),totalbuy("sum(quantity)").as("Totalquantity")).orderBy(desc("Totalquantity"))
topbuy.show(5)
// 选择productId为230010的行并展示结果
val Oneproduct:Dataset[Row]= topSales.select("productId","Totalquantity").filter(row=>row.getAs[String]("productId") == 230010)
Oneproduct.show()
// 停止SparkContext
sc.stop()
}
}
```
阅读全文