while ~isempty(indexs(flags)) temp_index = indexs(flags); source = y(:,temp_index(1)); flags(temp_index(1)) = 0; temp_index = temp_index(2:end); temp_flag = []; for i = 1: length(temp_index) corrs = corrcoef(source,y(:,temp_index(i)));%矩阵相关系数 corrs = corrs(1,2); if corrs >= threshold_corr temp_flag(end+1) = i; end end flags(temp_index(temp_flag)) = 0; sgc(:,end+1) = source+sum(y(:,temp_index(temp_flag)),2); g_h = sum(sgc,2); g_h_e = sum((x-g_h).^2); if g_h_e / x_e < threshold_nmse break end end将这块的相似条件改为杰卡德相似系数

时间: 2023-06-16 21:04:12 浏览: 45
要将这段代码的相似条件改为杰卡德相似系数,可以按照以下步骤进行修改: 1. 将计算相关系数的语句改为计算杰卡德相似系数的语句。杰卡德相似系数可以通过计算两个向量的交集与并集的比值来得到,可以使用 MATLAB 自带的 intersect 和 union 函数来实现。修改后的代码如下: ``` for i = 1: length(temp_index) intersection = intersect(source,y(:,temp_index(i))); union = union(source,y(:,temp_index(i))); jaccard = length(intersection) / length(union); if jaccard >= threshold_jaccard temp_flag(end+1) = i; end end ``` 其中,`threshold_jaccard` 是杰卡德相似系数的阈值,可以根据具体需求进行设置。 2. 将计算 NMSE 的语句中的 `g_h` 改为 `sgc`,因为 `sgc` 是当前已经合并的所有信号的和。修改后的代码如下: ``` g_h_e = sum((x-sum(sgc,2)).^2); ``` 3. 根据需要,可能还需要对其他部分进行相应的修改。 需要注意的是,杰卡德相似系数与相关系数并不是直接可比的,因为它们的取值范围不同。在使用杰卡德相似系数时,需要根据具体应用场景进行阈值的设置,以确保得到合理的结果。
相关问题

while ~isempty(indexs(flags)) temp_index = indexs(flags); source = y(:,temp_index(1)); flags(temp_index(1)) = 0; temp_index = temp_index(2:end); temp_flag = []; for i = 1: length(temp_index) corrs = corrcoef(source,y(:,temp_index(i))) corrs = corrs(1,2); if corrs >= threshold_corr temp_flag(end+1) = i; 这怎么改成修正余弦相似度

要将这段代码改成修正余弦相似度,需要进行以下修改: 1. 将 `corrcoef` 函数修改为计算修正余弦相似度的函数。修正余弦相似度可以通过以下公式计算: $$ r_{xy} = \frac{\sum\limits_{i=1}^n (x_i - \bar{x}) (y_i - \bar{y})}{\sqrt{\sum\limits_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum\limits_{i=1}^n (y_i - \bar{y})^2} + \epsilon} $$ 其中,$x$ 和 $y$ 是要比较的两个向量,$n$ 是向量的长度,$\bar{x}$ 和 $\bar{y}$ 是两个向量的均值,$\epsilon$ 是一个很小的数,防止分母为零。 2. 将 `corrs` 的计算方法改为修正余弦相似度的计算方法,即: ``` corrs = sum((source - mean(source)).*(y(:,temp_index(i)) - mean(y(:,temp_index(i)))))/(sqrt(sum((source - mean(source)).^2))*sqrt(sum((y(:,temp_index(i)) - mean(y(:,temp_index(i)))).^2)) + eps; ``` 其中,`source` 是要比较的向量,`y(:,temp_index(i))` 是另一个向量,`eps` 是一个很小的数,防止分母为零。 修改后的代码如下: ``` while ~isempty(indexs(flags)) temp_index = indexs(flags); source = y(:,temp_index(1)); flags(temp_index(1)) = 0; temp_index = temp_index(2:end); temp_flag = []; for i = 1: length(temp_index) corrs = sum((source - mean(source)).*(y(:,temp_index(i)) - mean(y(:,temp_index(i)))))/(sqrt(sum((source - mean(source)).^2))*sqrt(sum((y(:,temp_index(i)) - mean(y(:,temp_index(i)))).^2)) + eps; if corrs >= threshold_corr temp_flag(end+1) = i; end end flags(temp_index(temp_flag)) = 0; end ```

indexs = linspace(1,d,d);%生成等差数列。语法为:linspace(x1, x2, n),其中x1是起始值,x2是终止值,n是生成的数字个数 flags = logical(indexs);%逻辑函数 x_e = sum((x-mean(x)).^2);%mean 矩阵均值 方差 sgc = []; g_h = 0; g_h_e = 0; while ~isempty(indexs(flags)) temp_index = indexs(flags); source = y(:,temp_index(1)); flags(temp_index(1)) = 0; temp_index = temp_index(2:end); temp_flag = []; for i = 1: length(temp_index) corrs = corrcoef(source,y(:,temp_index(i)));%矩阵相关系数 corrs = corrs(1,2); if corrs >= threshold_corr temp_flag(end+1) = i; end end flags(temp_index(temp_flag)) = 0; sgc(:,end+1) = source+sum(y(:,temp_index(temp_flag)),2); g_h = sum(sgc,2); g_h_e = sum((x-g_h).^2); if g_h_e / x_e < threshold_nmse break end将这块的相似条件改为余弦相似度

可以将代码中的corrcoef函数替换为pdist2函数,使用余弦相似度计算矩阵之间的相似度。具体代码如下: indexs = linspace(1,d,d); flags = logical(indexs); x_e = sum((x-mean(x)).^2); sgc = []; g_h = 0; g_h_e = 0; while ~isempty(indexs(flags)) temp_index = indexs(flags); source = y(:,temp_index(1)); flags(temp_index(1)) = 0; temp_index = temp_index(2:end); temp_flag = []; for i = 1: length(temp_index) corrs = pdist2(source', y(:,temp_index(i))', 'cosine'); if corrs <= threshold_cosine temp_flag(end+1) = i; end end flags(temp_index(temp_flag)) = 0; sgc(:,end+1) = source+sum(y(:,temp_index(temp_flag)),2); g_h = sum(sgc,2); g_h_e = sum((x-g_h).^2); if g_h_e / x_e < threshold_nmse break end end 这样代码中的相似条件就被改为了余弦相似度。

相关推荐

将以下python 代码转换成matlab语言:import pandas as pd def calculate_mixing_degree(target_species, neighbor_species): mixing_sum = 0 species_count = len(set(neighbor_species)) - 1 # 减去目标树的重复 for neighbor in neighbor_species: if target_species != neighbor: # 如果参照树与邻近树非同种 mixing_sum += 1 # 混交度加1 mixing_degree = mixing_sum / species_count if species_count > 0 else 0 # 计算混交度 return mixing_degree def calculate_size_ratio(target_diameter, neighbor_diameters): size_sum = 0 neighbor_count = 0 for neighbor_diameter in neighbor_diameters: if pd.notnull(neighbor_diameter): neighbor_diameters_split = str(neighbor_diameter).split(",") # 将字符串按逗号分隔成列表 for neighbor in neighbor_diameters_split: neighbor = neighbor.strip() # 去除字符串两端的空格 if neighbor != "": neighbor = float(neighbor) if neighbor < target_diameter: size_sum += 1 # 大小比数加1 neighbor_count += 1 size_ratio = size_sum / neighbor_count if neighbor_count > 0 else 0 # 计算大小比数 return size_ratio def main(): data = pd.read_excel(r"C:\Users\23714\Desktop\样地数据.xls") result = [] for index, row in data.iterrows(): tree_number = row["树编号"] target_species = row["树种"] neighbor_species = row["四邻树"].split(",") # 将四邻树字符串按逗号分隔成列表 neighbor_diameters = row[4:].tolist() # 获取从第5列开始的四邻树直径数据,并转换为列表 target_diameter = row["胸径"] mixing_degree = calculate_mixing_degree(target_species, neighbor_species) size_ratio = calculate_size_ratio(target_diameter, neighbor_diameters) result.append({"树编号": tree_number, "树种": target_species, "混交度": mixing_degree, "大小比数": size_ratio}) result_df = pd.DataFrame(result) result_df.to_excel(r"C:\Users\23714\Desktop\结果数据.xls", index=False) if __name__ == '__main__': main()

function [pesq_mos, pesq_seg] = pesq(ref, deg, fs) % Check inputs if nargin < 3 fs = 16000; end if nargin < 2 error('Not enough input arguments'); end if length(ref) ~= length(deg) error('Input signals must be of equal length'); end % Load filter coefficients load('pesq_filter.mat'); % High-pass filter deg_hp = filter(b_hp, a_hp, deg); % Remove silence [r_beg, r_end] = find_voiced(ref, fs); [d_beg, d_end] = find_voiced(deg_hp, fs); r_sig = ref(r_beg:r_end); d_sig = deg_hp(d_beg:d_end); % Find maximum length sig_len = min(length(r_sig), length(d_sig)); % Filter signals r_sig = filter(b_lpf, a_lpf, r_sig(1:sig_len)); d_sig = filter(b_lpf, a_lpf, d_sig(1:sig_len)); % Resample signals r_sig = resample(r_sig, 8000, fs); d_sig = resample(d_sig, 8000, fs); % Calculate PESQ [pesq_mos, pesq_seg] = pesq_mex(r_sig, d_sig); end function [beg, endd] = find_voiced(sig, fs) % Set parameters win_len = 240; win_shift = 80; sil_thresh = 30; min_voiced = 0.1; % Calculate energy sig_pow = sig.^2; sig_pow_filt = filter(ones(1, win_len)/win_len, 1, sig_pow); % Normalize sig_pow_filt = sig_pow_filt/max(sig_pow_filt); % Find voiced segments beg = []; endd = []; num_voiced = 0; for n = 1:win_shift:length(sig)-win_len if sig_pow_filt(n+win_len/2) > min_voiced && ... mean(sig_pow_filt(n:n+win_len-1)) > sil_thresh if isempty(beg) beg = n; end else if ~isempty(beg) endd = [endd n-1]; num_voiced = num_voiced + 1; beg = []; end end end if ~isempty(beg) endd = [endd length(sig)]; num_voiced = num_voiced + 1; end % Remove segments that are too short min_len = fs*0.05; len_voiced = endd-beg+1; too_short = len_voiced < min_len; beg(too_short) = []; endd(too_short) = []; end这段代码中的pesq_mex.mex64文件怎么编译

最新推荐

recommend-type

setuptools-40.7.3-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

Centos7-离线安装redis

Centos7-离线安装redis
recommend-type

setuptools-39.0.1-py2.py3-none-any.whl

Node.js,简称Node,是一个开源且跨平台的JavaScript运行时环境,它允许在浏览器外运行JavaScript代码。Node.js于2009年由Ryan Dahl创立,旨在创建高性能的Web服务器和网络应用程序。它基于Google Chrome的V8 JavaScript引擎,可以在Windows、Linux、Unix、Mac OS X等操作系统上运行。 Node.js的特点之一是事件驱动和非阻塞I/O模型,这使得它非常适合处理大量并发连接,从而在构建实时应用程序如在线游戏、聊天应用以及实时通讯服务时表现卓越。此外,Node.js使用了模块化的架构,通过npm(Node package manager,Node包管理器),社区成员可以共享和复用代码,极大地促进了Node.js生态系统的发展和扩张。 Node.js不仅用于服务器端开发。随着技术的发展,它也被用于构建工具链、开发桌面应用程序、物联网设备等。Node.js能够处理文件系统、操作数据库、处理网络请求等,因此,开发者可以用JavaScript编写全栈应用程序,这一点大大提高了开发效率和便捷性。 在实践中,许多大型企业和组织已经采用Node.js作为其Web应用程序的开发平台,如Netflix、PayPal和Walmart等。它们利用Node.js提高了应用性能,简化了开发流程,并且能更快地响应市场需求。
recommend-type

基于JSP实现的在线仓库管理系统源码.zip

这个是一个JSP实现的在线仓库管理系统,管理员角色包含以下功能:仓库管理员登录,货品&amp;类别信息管理,采购信息管理,出库和入库管理,财务信息管理,管理员管理等功能。 本项目实现的最终作用是基于JSP实现的在线仓库管理系统 分为1个角色 第1个角色为管理员角色,实现了如下功能: - 仓库管理员登录 - 出库和入库管理 - 管理员管理 - 财务信息管理 - 货品&类别信息管理 - 采购信息管理
recommend-type

基于springboot的房屋租赁系统

开发语言:Java JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.6/5.7(或8.0) 数据库工具:Navicat 开发软件:idea 依赖管理包:Maven 代码+数据库保证完整可用,可提供远程调试并指导运行服务(额外付费)~ 如果对系统的中的某些部分感到不合适可提供修改服务,比如题目、界面、功能等等... 声明: 1.项目已经调试过,完美运行 2.需要远程帮忙部署项目,需要额外付费 3.本项目有演示视频,如果需要观看,请联系我v:19306446185 4.调试过程中可帮忙安装IDEA,eclipse,MySQL,JDK,Tomcat等软件 重点: 需要其他Java源码联系我,更多源码任你选,你想要的源码我都有! https://img-blog.csdnimg.cn/direct/e73dc0ac8d27434b86d886db5a438c71.jpeg
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

解释minorization-maximization (MM) algorithm,并给出matlab代码编写的例子

Minorization-maximization (MM) algorithm是一种常用的优化算法,用于求解非凸问题或含有约束的优化问题。该算法的基本思想是通过构造一个凸下界函数来逼近原问题,然后通过求解凸下界函数的最优解来逼近原问题的最优解。具体步骤如下: 1. 初始化参数 $\theta_0$,设 $k=0$; 2. 构造一个凸下界函数 $Q(\theta|\theta_k)$,使其满足 $Q(\theta_k|\theta_k)=f(\theta_k)$; 3. 求解 $Q(\theta|\theta_k)$ 的最优值 $\theta_{k+1}=\arg\min_\theta Q(
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。