手写一个promise

时间: 2023-04-08 21:04:51 浏览: 67
Promise 是一种异步编程的解决方案,它可以避免回调地狱,让异步操作更加简洁和可读。下面是手写一个 Promise 的基本实现: ```javascript class MyPromise { constructor(executor) { this.status = 'pending'; this.value = undefined; this.reason = undefined; this.onResolvedCallbacks = []; this.onRejectedCallbacks = []; const resolve = (value) => { if (this.status === 'pending') { this.status = 'fulfilled'; this.value = value; this.onResolvedCallbacks.forEach(fn => fn()); } }; const reject = (reason) => { if (this.status === 'pending') { this.status = 'rejected'; this.reason = reason; this.onRejectedCallbacks.forEach(fn => fn()); } }; try { executor(resolve, reject); } catch (error) { reject(error); } } then(onFulfilled, onRejected) { onFulfilled = typeof onFulfilled === 'function' ? onFulfilled : value => value; onRejected = typeof onRejected === 'function' ? onRejected : reason => { throw reason }; const promise2 = new MyPromise((resolve, reject) => { if (this.status === 'fulfilled') { setTimeout(() => { try { const x = onFulfilled(this.value); this.resolvePromise(promise2, x, resolve, reject); } catch (error) { reject(error); } }, 0); } else if (this.status === 'rejected') { setTimeout(() => { try { const x = onRejected(this.reason); this.resolvePromise(promise2, x, resolve, reject); } catch (error) { reject(error); } }, 0); } else { this.onResolvedCallbacks.push(() => { setTimeout(() => { try { const x = onFulfilled(this.value); this.resolvePromise(promise2, x, resolve, reject); } catch (error) { reject(error); } }, 0); }); this.onRejectedCallbacks.push(() => { setTimeout(() => { try { const x = onRejected(this.reason); this.resolvePromise(promise2, x, resolve, reject); } catch (error) { reject(error); } }, 0); }); } }); return promise2; } resolvePromise(promise2, x, resolve, reject) { if (promise2 === x) { return reject(new TypeError('Chaining cycle detected for promise')); } let called = false; if (x !== null && (typeof x === 'object' || typeof x === 'function')) { try { const then = x.then; if (typeof then === 'function') { then.call(x, y => { if (called) return; called = true; this.resolvePromise(promise2, y, resolve, reject); }, r => { if (called) return; called = true; reject(r); }); } else { resolve(x); } } catch (error) { if (called) return; called = true; reject(error); } } else { resolve(x); } } catch(onRejected) { return this.then(null, onRejected); } finally(onFinally) { return this.then( value => MyPromise.resolve(onFinally()).then(() => value), reason => MyPromise.resolve(onFinally()).then(() => { throw reason }) ); } static resolve(value) { return new MyPromise(resolve => resolve(value)); } static reject(reason) { return new MyPromise((resolve, reject) => reject(reason)); } static all(promises) { return new MyPromise((resolve, reject) => { const results = []; let count = 0; const processResult = (index, result) => { results[index] = result; count++; if (count === promises.length) { resolve(results); } }; for (let i = 0; i < promises.length; i++) { promises[i].then(result => processResult(i, result), reject); } }); } static race(promises) { return new MyPromise((resolve, reject) => { for (let i = 0; i < promises.length; i++) { promises[i].then(resolve, reject); } }); } } ``` 这个 Promise 实现包含了基本的状态管理、链式调用、错误处理、异步执行、静态方法等功能。当然,这只是一个简单的实现,还有很多细节和边界情况需要考虑。

相关推荐

最新推荐

recommend-type

新建文本文档.txt

新建文本文档
recommend-type

开源Git gui工具Fork

开源Git gui工具Fork,CSDN能找到教程,但是资料不多,推荐用Tortoise
recommend-type

yolov5在华为昇腾atlas上加速推理

该资源为yolov5在华为昇腾atlas上使用Ascend310芯片加速推理,属于c++后端开发,适合C++开发者在华为昇腾盒子上移植深度学习算法的博主们。 资源是demo形式,包含完整的一套代码,还有转好的离线模型文件和跑出的测试结果图片。
recommend-type

C++ 实现贪吃蛇小游戏

C++贪吃蛇小游戏简介 内容概要 C++贪吃蛇小游戏是一款经典的2D游戏,它利用C++编程语言结合基本的图形库(如NCurses库或SDL库)实现。游戏的核心玩法包括控制贪吃蛇在封闭的场地内移动,通过吃掉随机出现的食物来增长身体长度,同时避免碰到场地边界或自己的身体,否则游戏结束。游戏界面简洁直观,通过键盘控制贪吃蛇的方向,提供流畅的游戏体验。 适用人群 C++贪吃蛇小游戏适用于广泛的人群,特别是: C++编程学习者:对于正在学习C++编程的学生或爱好者,这款小游戏是一个很好的实践项目。通过实现游戏,可以加深对C++语法、数据结构、面向对象编程等知识点的理解和应用。 使用场景及目标 C++贪吃蛇小游戏可以在以下场景中使用,并达到以下目标: 编程教学实践:在编程教学课堂上,教师可以使用该游戏作为案例,引导学生完成项目的开发。通过实践,学生可以更好地掌握C++编程技能,并将理论知识应用于实际项目中。 个人项目实践:对于个人学习者,实现贪吃蛇小游戏可以作为自我挑战和实践的机会。通过独立完成项目,可以提升自己的编程能力和解决问题的能力。
recommend-type

ec616DataSheet

移芯NBIOT 芯片,NB芯片,水表电表芯片,烟感 地磁芯片 超弱信号环境业务能力。
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。