flink如何监听目录下的文件
时间: 2024-04-29 15:24:25 浏览: 206
Flink可以使用`FileSource`来监听目录下的文件。具体操作如下:
1. 导入必要的依赖:
```java
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import org.apache.flink.streaming.api.functions.source.FileSource;
import org.apache.flink.streaming.api.functions.source.TimestampedFileInputSplit;
import org.apache.flink.util.Collector;
```
2. 创建`StreamExecutionEnvironment`:
```java
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
```
3. 创建`FileSource`:
```java
String filePath = "/path/to/directory";
FileSource<String> fileSource = new FileSource<>(filePath, new TextInputFormat(), FileProcessingMode.PROCESS_CONTINUOUSLY, 1000);
```
其中,`filePath`是目标目录的路径,`TextInputFormat`是指读取文本文件,`FileProcessingMode.PROCESS_CONTINUOUSLY`表示持续监听目录,`1000`是指每隔1秒扫描一次目录。
4. 对文件内容进行处理:
```java
DataStream<String> lines = env.readFile(fileSource, filePath, FileProcessingMode.PROCESS_CONTINUOUSLY, 1000)
.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String s, Collector<String> collector) throws Exception {
String[] words = s.split("\\W+");
for (String word : words) {
if (word.length() > 0) {
collector.collect(word);
}
}
}
});
```
其中,`env.readFile()`方法会返回`DataStream`,我们可以在其中使用`flatMap`等操作对文件内容进行处理。
5. 打印结果:
```java
lines.print();
```
6. 启动任务:
```java
env.execute("File Streaming Word Count");
```
完整代码示例:
```java
import org.apache.flink.api.common.functions.FlatMapFunction;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode;
import org.apache.flink.streaming.api.functions.source.FileSource;
import org.apache.flink.streaming.api.functions.source.TimestampedFileInputSplit;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.streaming.api.functions.source.FileProcessingMode.WatchType;
import org.apache.flink.util.Collector;
import org.apache.flink.api.common.serialization.SimpleStringSchema;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;
import java.util.Properties;
public class FileStreamingWordCount {
public static void main(String[] args) throws Exception {
// 创建 execution environment
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
// 设置并行度为1,方便观察结果
env.setParallelism(1);
// 监听文件目录
String filePath = "/path/to/directory";
FileSource<String> fileSource = new FileSource<>(filePath, new TextInputFormat(), FileProcessingMode.PROCESS_CONTINUOUSLY, 1000);
// 处理文件内容
DataStream<String> lines = env.readFile(fileSource, filePath, FileProcessingMode.PROCESS_CONTINUOUSLY, 1000)
.flatMap(new FlatMapFunction<String, String>() {
@Override
public void flatMap(String s, Collector<String> collector) throws Exception {
String[] words = s.split("\\W+");
for (String word : words) {
if (word.length() > 0) {
collector.collect(word);
}
}
}
});
// 统计单词出现次数
DataStream<Tuple2<String, Integer>> wordCounts = lines
.map(word -> Tuple2.of(word, 1))
.keyBy(0)
.sum(1);
// 打印结果
wordCounts.print();
// 将结果写入 Kafka
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
FlinkKafkaProducer<String> producer = new FlinkKafkaProducer<>("word_count", new SimpleStringSchema(), properties);
producer.setWriteTimestampToKafka(true);
wordCounts.map(tuple -> tuple.toString()).addSink(producer);
// 执行任务
env.execute("File Streaming Word Count");
}
}
```
阅读全文