使用交叉熵损失函数和Adam优化器来训练bigru加注意力预测模型的代码示例
时间: 2023-11-23 18:17:10 浏览: 156
以下是一个基于Pytorch实现的BiGRU+Attention预测模型训练的代码示例:
```python
import torch.optim as optim
# 定义模型
model = BiGRU_Attention(vocab_size, embedding_dim, hidden_dim, output_dim, dropout).to(device)
# 定义损失函数和优化器
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters())
# 训练模型
def train(model, iterator, optimizer, criterion):
model.train()
epoch_loss = 0
for batch in iterator:
optimizer.zero_grad()
text, label = batch.text.to(device), batch.label.to(device)
output = model(text)
loss = criterion(output, label)
loss.backward()
optimizer.step()
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 测试模型
def evaluate(model, iterator, criterion):
model.eval()
epoch_loss = 0
with torch.no_grad():
for batch in iterator:
text, label = batch.text.to(device), batch.label.to(device)
output = model(text)
loss = criterion(output, label)
epoch_loss += loss.item()
return epoch_loss / len(iterator)
# 训练模型
N_EPOCHS = 10
best_valid_loss = float('inf')
for epoch in range(N_EPOCHS):
train_loss = train(model, train_iterator, optimizer, criterion)
valid_loss = evaluate(model, valid_iterator, criterion)
if valid_loss < best_valid_loss:
best_valid_loss = valid_loss
torch.save(model.state_dict(), 'model.pt')
print(f'Epoch: {epoch+1:02} | Train Loss: {train_loss:.3f} | Val. Loss: {valid_loss:.3f}')
# 加载最好的模型
model.load_state_dict(torch.load('model.pt'))
# 测试模型
test_loss = evaluate(model, test_iterator, criterion)
print(f'Test Loss: {test_loss:.3f}')
```
在训练过程中,先将模型设置为训练状态(model.train()),然后对每个batch进行训练,计算损失函数并进行反向传播和参数更新。训练完一个epoch后,将模型设置为评估状态(model.eval()),然后对验证集进行评估。如果当前的验证集损失函数比之前的最佳损失函数还要小,就保存当前模型的参数(torch.save(model.state_dict(), 'model.pt'))。最后,加载最好的模型并对测试集进行评估。
阅读全文