怎么绘制X,Y = make_moons(n_samples=400,shuffle=True,noise=0.1,random_state=136)的二维散点图,写出代码

时间: 2023-08-29 20:06:13 浏览: 74
要绘制 make_moons 生成的二维散点图,可以使用 matplotlib 库中的 scatter 函数。具体实现代码如下: ```python import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import make_moons # 生成数据 X, Y = make_moons(n_samples=400, shuffle=True, noise=0.1, random_state=136) # 绘制散点图 plt.scatter(X[:, 0], X[:, 1], c=Y, cmap=plt.cm.Spectral) plt.show() ``` 代码中,首先使用 make_moons 函数生成了二维数据,并将其保存在 X 和 Y 中。然后使用 scatter 函数将数据绘制成散点图。其中,X[:, 0] 表示 X 中的第一列数据,X[:, 1] 表示 X 中的第二列数据,c=Y 表示按照 Y 的取值用不同的颜色绘制散点图。最后使用 show 函数显示图形。
相关问题

对于X,Y = make_moons(n_samples=400,shuffle=True,noise=0.1,random_state=136),使用AGNES聚类算法中cluster = AgglomerativeClustering(n_clusters=2, distance_threshold=None, linkage='single').fit(X)怎么调参最优,写出代码

AGNES聚类算法中有两个重要的参数需要调整:n_clusters和linkage。 其中,n_clusters表示聚类的簇数,linkage表示聚类时使用的距离度量方式。 下面是使用网格搜索(GridSearchCV)来寻找最优参数的代码: ``` python from sklearn.datasets import make_moons from sklearn.cluster import AgglomerativeClustering from sklearn.model_selection import GridSearchCV # 生成数据 X, Y = make_moons(n_samples=400, shuffle=True, noise=0.1, random_state=136) # 定义模型 model = AgglomerativeClustering() # 定义参数搜索范围 param_grid = { "n_clusters": [2, 3, 4, 5, 6], "linkage": ["ward", "complete", "average", "single"] } # 定义网格搜索 grid_search = GridSearchCV( model, param_grid, cv=5, scoring="adjusted_rand_score" ) # 进行网格搜索 grid_search.fit(X) print("最优参数:", grid_search.best_params_) print("最优得分:", grid_search.best_score_) ``` 在上述代码中,我们使用了网格搜索来寻找最优参数。其中,param_grid指定了搜索的参数范围,cv=5指定了使用5折交叉验证来评估每个参数组合的性能,scoring="adjusted_rand_score"指定了评估指标为调整兰德指数。 最后,我们输出了最优参数和最优得分。

对于X,Y = make_moons(n_samples=400,shuffle=True,noise=0.1,random_state=136),使用DBSCAN聚类算法中cluster = AgglomerativeClustering(n_clusters=2, distance_threshold=None, linkage='single').fit(X)怎么用网格搜索调参最优,写出代码

对于DBSCAN聚类算法,不能使用AgglomerativeClustering来进行训练。下面给出使用DBSCAN聚类算法进行网格搜索调参的示例代码: ``` from sklearn.datasets import make_moons from sklearn.cluster import DBSCAN from sklearn.model_selection import GridSearchCV # 创建数据集 X, y = make_moons(n_samples=400, shuffle=True, noise=0.1, random_state=136) # 定义参数空间 param_grid = { 'eps': [0.1, 0.3, 0.5, 0.7, 1.0], 'min_samples': [2, 3, 4, 5, 6, 7, 8, 9, 10], 'metric': ['euclidean', 'manhattan', 'chebyshev'] } # 定义DBSCAN聚类算法 model = DBSCAN() # 定义网格搜索模型 grid_search = GridSearchCV(model, param_grid, cv=5) # 训练模型 grid_search.fit(X) # 输出最优参数 print("Best parameters: ", grid_search.best_params_) ``` 在上述代码中,我们使用sklearn中的DBSCAN来进行聚类,并使用GridSearchCV进行网格搜索调参。我们首先定义了参数空间,然后训练模型并输出最优参数。

相关推荐

翻译这段程序并自行赋值调用:import matplotlib.pyplot as plt import numpy as np import sklearn import sklearn.datasets import sklearn.linear_model def plot_decision_boundary(model, X, y): # Set min and max values and give it some padding x_min, x_max = X[0, :].min() - 1, X[0, :].max() + 1 y_min, y_max = X[1, :].min() - 1, X[1, :].max() + 1 h = 0.01 # Generate a grid of points with distance h between them xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Predict the function value for the whole grid Z = model(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) # Plot the contour and training examples plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral) plt.ylabel('x2') plt.xlabel('x1') plt.scatter(X[0, :], X[1, :], c=y, cmap=plt.cm.Spectral) def sigmoid(x): s = 1/(1+np.exp(-x)) return s def load_planar_dataset(): np.random.seed(1) m = 400 # number of examples N = int(m/2) # number of points per class print(np.random.randn(N)) D = 2 # dimensionality X = np.zeros((m,D)) # data matrix where each row is a single example Y = np.zeros((m,1), dtype='uint8') # labels vector (0 for red, 1 for blue) a = 4 # maximum ray of the flower for j in range(2): ix = range(Nj,N(j+1)) t = np.linspace(j3.12,(j+1)3.12,N) + np.random.randn(N)0.2 # theta r = anp.sin(4t) + np.random.randn(N)0.2 # radius X[ix] = np.c_[rnp.sin(t), rnp.cos(t)] Y[ix] = j X = X.T Y = Y.T return X, Y def load_extra_datasets(): N = 200 noisy_circles = sklearn.datasets.make_circles(n_samples=N, factor=.5, noise=.3) noisy_moons = sklearn.datasets.make_moons(n_samples=N, noise=.2) blobs = sklearn.datasets.make_blobs(n_samples=N, random_state=5, n_features=2, centers=6) gaussian_quantiles = sklearn.datasets.make_gaussian_quantiles(mean=None, cov=0.5, n_samples=N, n_features=2, n_classes=2, shuffle=True, random_state=None) no_structure = np.random.rand(N, 2), np.random.rand(N, 2) return noisy_circles, noisy_moons, blobs, gaussian_quantiles, no_structure

最新推荐

recommend-type

基于TC72(SPI接口)温度传感器、STM32F103C8T6、LCD1602、FREERTOS的温度采集proteus仿真

spi
recommend-type

ehcache-core-2.6.9.jar

javaee/javaweb常用jar包,亲测可用,导入到java工程中即可使用
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】增量式PID的simulink仿真实现

# 2.1 Simulink仿真环境简介 Simulink是MATLAB中用于建模、仿真和分析动态系统的图形化环境。它提供了一个直观的用户界面,允许用户使用块和连接线来创建系统模型。Simulink模型由以下元素组成: - **子系统:**将复杂系统分解成更小的、可管理的模块。 - **块:**代表系统中的组件,如传感器、执行器和控制器。 - **连接线:**表示信号在块之间的流动。 Simulink仿真环境提供了广泛的块库,涵盖了各种工程学科,包括控制系统、电子和机械工程。它还支持用户自定义块的创建,以满足特定仿真需求。 # 2. Simulink仿真环境的搭建和建模 ### 2.
recommend-type

训练集和测试集的准确率都99%,但是预测效果不好

即使训练集和测试集的准确率都很高,但是在实际的预测中表现不佳,可能会有以下几个原因: 1. 数据质量问题:模型训练和测试的数据可能存在问题,比如数据标签错误、数据集采样不均衡、数据集中存在异常值等问题,这些问题可能会导致模型在实际预测中表现不佳。 2. 特征工程问题:模型的特征工程可能存在问题,导致模型无法很好地捕捉数据的特征,从而影响预测效果。 3. 模型选择问题:模型的选择可能不合适,比如选择的模型太简单,无法很好地拟合数据,或者选择的模型太复杂,导致过拟合等问题。 4. 超参数调整问题:模型的超参数可能没有调整到最佳状态,需要进行调整。 针对以上可能的原因,可以采取相应的措施进
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【实战演练】MATLAB simulink船舶动力定位模拟器

# 1. MATLAB Simulink 简介** MATLAB Simulink 是 MathWorks 公司开发的一款图形化建模和仿真软件,广泛应用于工程、科学和教育领域。它提供了丰富的模块库和仿真环境,使工程师能够快速构建和仿真复杂系统。 Simulink 的核心概念是基于块状图建模,其中每个模块代表一个特定的功能或组件。用户可以通过拖放模块并连接它们来创建系统模型。Simulink 提供了广泛的模块库,涵盖了信号处理、控制系统、动力学和通信等领域。 此外,Simulink 还支持自定义模块开发,允许用户创建自己的模块来扩展其功能。这使得 Simulink 成为一个高度灵活的仿真平
recommend-type

linux下RS485怎么实现

在Linux下实现RS485通信,需要做以下几个步骤: 1. 确认硬件支持:首先需要确认通信设备硬件是否支持RS485通信,如果不支持需要更换支持RS485通信的硬件设备。 2. 配置串口参数:在Linux下使用RS485通信,需要对串口进行一些特殊的配置。例如,需要将串口设置为半双工模式、开启硬件流控等。可以使用Linux提供的stty命令或者相关API接口进行配置。 3. 编写应用程序:通过Linux提供的串口API接口,编写应用程序实现RS485通信。在应用程序中需要设置对应的串口参数,以及发送和接收数据的逻辑。 4. 配置硬件电平转换器:在使用RS485通信时,需要将串口的逻辑