编写一个程序,读取整数 n, 并根据深度n的递归调用绘制 Koch 曲线。 koch 曲线是众所周知的一种曲线。 你可以使用以下算法绘制 Koch 曲线: 将给定的段(p1,p2)分成三个相等的段。 用与线段相同长度的等边三角形(s,u,t) 的两侧替换中间线段。 对新段 (p1,s)、(s,u)、(u,t)、(t,p2) 递归重复此过程。 你应该从(0,0),(100,0) 作为第一段开始。 输入 给出一个整数 n。 输出 打印 Koch 曲线的每个点(x,y)。 在一行中打印一个点。 你应该从点(0,0) 开始,它是第一条线段的端点,并以点 (100,0) 结束,以便你可以将科赫曲线绘制为一条完整的线。 每个点的横纵坐标都应以小数形式给出,并且绝对误差最多为10 −4 。 约束 0≤n≤6 输入样例 1 输出样例 0.00000000 0.00000000 33.33333333 0.00000000 50.00000000 28.86751346 66.66666667 0.00000000 100.00000000 0.00000000

时间: 2023-12-01 07:02:56 浏览: 68
以下是Python3的代码实现: ```python import math def koch_curve(n, p1, p2): if n == 0: print("{:.8f} {:.8f}".format(p1[0], p1[1])) else: s = ((2 * p1[0] + p2[0]) / 3, (2 * p1[1] + p2[1]) / 3) t = ((p1[0] + 2 * p2[0]) / 3, (p1[1] + 2 * p2[1]) / 3) u = ((t[0] - s[0]) * math.cos(math.radians(60)) - (t[1] - s[1]) * math.sin(math.radians(60)) + s[0], (t[0] - s[0]) * math.sin(math.radians(60)) + (t[1] - s[1]) * math.cos(math.radians(60)) + s[1]) koch_curve(n-1, p1, s) koch_curve(n-1, s, u) koch_curve(n-1, u, t) koch_curve(n-1, t, p2) n = int(input()) koch_curve(n, (0, 0), (100, 0)) print("{:.8f} {:.8f}".format(100, 0)) ``` 思路解析: 这道题是一个经典的分形图形绘制问题,需要使用递归实现。根据题目中的描述,我们可以将某一条线段分成三个相等的线段,然后在中间的线段两侧画出等边三角形,这样就形成了一个新的图形,然后对新的线段进行同样的操作,直到递归到最后一层。从代码实现中可以看出,我们需要传入当前递归的深度n、当前线段的起点p1和终点p2。当递归到深度为0时,输出当前线段的起点p1。否则,根据题目中的操作,计算新的三个点s、t、u,并对新的线段进行递归操作。最后在主函数中调用koch_curve函数,传入起点(0,0)和终点(100,0),然后输出终点(100,0)。
阅读全文

相关推荐

最新推荐

recommend-type

python递归函数求n的阶乘,优缺点及递归次数设置方式

在本例中,我们将探讨如何使用递归函数计算一个数的阶乘,以及递归函数的优缺点和如何设置递归深度。 首先,让我们看看如何用Python编写一个计算阶乘的递归函数。阶乘的定义是对于非负整数n,n的阶乘表示为所有小于...
recommend-type

MyBatis之自查询使用递归实现 N级联动效果(两种实现方式)

MyBatis是一个功能强大且灵活的持久层框架,它支持自查询和递归查询,下面我们将探讨如何使用MyBatis实现 N级联动效果。 递归查询 递归查询是指在一个查询中调用自身的查询,以便实现某些复杂的查询逻辑。在...
recommend-type

Python入门程序 函数应用(判断素数、递归求n的阶乘、x的n次方、最大最小值、插入排序法)

用户输入一个整数n,函数`fac(n)`会返回n的阶乘。 3. **x的n次方** `xn`函数使用递归来计算x的n次方。当n等于0时,返回1;否则,它计算x乘以x的(n-1)次方。用户输入x和n,函数会返回x的n次方。这里还处理了n为负数...
recommend-type

C#带控制点的贝塞尔Bezier曲线算法(源码)

这个方法接受一个包含“节点”(或称“关键点”)的数组 `knots`,并分别输出第一控制点数组 `firstControlPoints` 和第二控制点数组 `secondControlPoints`。 方法首先检查输入参数的有效性,如果 `knots` 为空或...
recommend-type

python递归计算N!的方法

”时,我们实际上是在谈论计算一个正整数N的阶乘,即所有从1到N的正整数的乘积。例如,5!(5的阶乘)等于5 * 4 * 3 * 2 * 1,结果是120。 在提供的代码中,`factorial`函数展示了如何使用递归来计算阶乘。这个函数...
recommend-type

Angular实现MarcHayek简历展示应用教程

资源摘要信息:"MarcHayek-CV:我的简历的Angular应用" Angular 应用是一个基于Angular框架开发的前端应用程序。Angular是一个由谷歌(Google)维护和开发的开源前端框架,它使用TypeScript作为主要编程语言,并且是单页面应用程序(SPA)的优秀解决方案。该应用不仅展示了Marc Hayek的个人简历,而且还介绍了如何在本地环境中设置和配置该Angular项目。 知识点详细说明: 1. Angular 应用程序设置: - Angular 应用程序通常依赖于Node.js运行环境,因此首先需要全局安装Node.js包管理器npm。 - 在本案例中,通过npm安装了两个开发工具:bower和gulp。bower是一个前端包管理器,用于管理项目依赖,而gulp则是一个自动化构建工具,用于处理如压缩、编译、单元测试等任务。 2. 本地环境安装步骤: - 安装命令`npm install -g bower`和`npm install --global gulp`用来全局安装这两个工具。 - 使用git命令克隆远程仓库到本地服务器。支持使用SSH方式(`***:marc-hayek/MarcHayek-CV.git`)和HTTPS方式(需要替换为具体用户名,如`git clone ***`)。 3. 配置流程: - 在server文件夹中的config.json文件里,需要添加用户的电子邮件和密码,以便该应用能够通过内置的联系功能发送信息给Marc Hayek。 - 如果想要在本地服务器上运行该应用程序,则需要根据不同的环境配置(开发环境或生产环境)修改config.json文件中的“baseURL”选项。具体而言,开发环境下通常设置为“../build”,生产环境下设置为“../bin”。 4. 使用的技术栈: - JavaScript:虽然没有直接提到,但是由于Angular框架主要是用JavaScript来编写的,因此这是必须理解的核心技术之一。 - TypeScript:Angular使用TypeScript作为开发语言,它是JavaScript的一个超集,添加了静态类型检查等功能。 - Node.js和npm:用于运行JavaScript代码以及管理JavaScript项目的依赖。 - Git:版本控制系统,用于代码的版本管理及协作开发。 5. 关于项目结构: - 该应用的项目文件夹结构可能遵循Angular CLI的典型结构,包含了如下目录:app(存放应用组件)、assets(存放静态资源如图片、样式表等)、environments(存放环境配置文件)、server(存放服务器配置文件如上文的config.json)等。 6. 开发和构建流程: - 开发时,可能会使用Angular CLI来快速生成组件、服务等,并利用热重载等特性进行实时开发。 - 构建应用时,通过gulp等构建工具可以进行代码压缩、ES6转译、单元测试等自动化任务,以确保代码的质量和性能优化。 7. 部署: - 项目最终需要部署到服务器上,配置文件中的“baseURL”选项指明了服务器上的资源基础路径。 8. 关于Git仓库: - 压缩包子文件的名称为MarcHayek-CV-master,表明这是一个使用Git版本控制的仓库,且存在一个名为master的分支,这通常是项目的主分支。 以上知识点围绕Angular应用“MarcHayek-CV:我的简历”的创建、配置、开发、构建及部署流程进行了详细说明,涉及了前端开发中常见的工具、技术及工作流。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

深入剖析:内存溢出背后的原因、预防及应急策略(专家版)

![深入剖析:内存溢出背后的原因、预防及应急策略(专家版)](https://d8it4huxumps7.cloudfront.net/uploads/images/65e82a01a4196_dangling_pointer_in_c_2.jpg?d=2000x2000) 参考资源链接:[Net 内存溢出(System.OutOfMemoryException)的常见情况和处理方式总结](https://wenku.csdn.net/doc/6412b784be7fbd1778d4a95f?spm=1055.2635.3001.10343) # 1. 内存溢出的概念及影响 内存溢出,又称
recommend-type

Java中如何对年月日时分秒的日期字符串作如下处理:如何日期分钟介于两个相连的半点之间,就将分钟数调整为前半点

在Java中,你可以使用`java.time`包中的类来处理日期和时间,包括格式化和调整。下面是一个示例,展示了如何根据给定的日期字符串(假设格式为"yyyy-MM-dd HH:mm:ss")进行这样的处理: ```java import java.text.SimpleDateFormat; import java.time.LocalDateTime; import java.time.ZoneId; import java.time.ZonedDateTime; public class Main { public static void main(String[] args
recommend-type

Crossbow Spot最新更新 - 获取Chrome扩展新闻

资源摘要信息:"Crossbow Spot - Latest News Update-crx插件" 该信息是关于一款特定的Google Chrome浏览器扩展程序,名为"Crossbow Spot - Latest News Update"。此插件的目的是帮助用户第一时间获取最新的Crossbow Spot相关信息,它作为一个RSS阅读器,自动聚合并展示Crossbow Spot的最新新闻内容。 从描述中可以提取以下关键知识点: 1. 功能概述: - 扩展程序能让用户领先一步了解Crossbow Spot的最新消息,提供实时更新。 - 它支持自动更新功能,用户不必手动点击即可刷新获取最新资讯。 - 用户界面设计灵活,具有美观的新闻小部件,使得信息的展现既实用又吸引人。 2. 用户体验: - 桌面通知功能,通过Chrome的新通知中心托盘进行实时推送,确保用户不会错过任何重要新闻。 - 提供一个便捷的方式来保持与Crossbow Spot最新动态的同步。 3. 语言支持: - 该插件目前仅支持英语,但开发者已经计划在未来的版本中添加对其他语言的支持。 4. 技术实现: - 此扩展程序是基于RSS Feed实现的,即从Crossbow Spot的RSS源中提取最新新闻。 - 扩展程序利用了Chrome的通知API,以及RSS Feed处理机制来实现新闻的即时推送和展示。 5. 版权与免责声明: - 所有的新闻内容都是通过RSS Feed聚合而来,扩展程序本身不提供原创内容。 - 用户在使用插件时应遵守相关的版权和隐私政策。 6. 安装与使用: - 用户需要从Chrome网上应用店下载.crx格式的插件文件,即Crossbow_Spot_-_Latest_News_Update.crx。 - 安装后,插件会自动运行,并且用户可以对其进行配置以满足个人偏好。 从以上信息可以看出,该扩展程序为那些对Crossbow Spot感兴趣或需要密切跟进其更新的用户提供了一个便捷的解决方案,通过集成RSS源和Chrome通知机制,使得信息获取变得更加高效和及时。这对于需要实时更新信息的用户而言,具有一定的实用价值。同时,插件的未来发展计划中包括了多语言支持,这将使得更多的用户能够使用并从中受益。