WGAN-GP形式的生成对抗网络
时间: 2023-09-18 12:14:16 浏览: 134
GAN生成对抗网络
WGAN-GP(Wasserstein GAN with Gradient Penalty)是一种生成对抗网络(GAN)模型,是WGAN的改进版本。WGAN-GP的提出主要是为了解决WGAN的一些问题,例如训练不稳定、梯度消失等。WGAN-GP的核心思想是将WGAN的权重裁剪改为梯度惩罚,并使用梯度惩罚来约束判别器的梯度。WGAN-GP在图像生成、图像修复等任务上均取得了较好的效果。
WGAN-GP的损失函数包括两个部分:生成器损失和判别器损失。生成器损失与WGAN相同,即最大化判别器对生成的样本的输出。判别器损失由两部分组成:真实样本和生成样本的Wasserstein距离,以及梯度惩罚项。梯度惩罚项是通过计算判别器对随机采样点的梯度范数的平均值,并将其与1进行差分,然后对差分的结果求平方,得到的结果作为惩罚项,用于约束判别器的梯度。整个损失函数的最小化过程是通过交替训练生成器和判别器来完成的。
相比于WGAN,WGAN-GP的优点在于不需要手动设置权重裁剪的值,同时使用梯度惩罚可以更好地约束判别器的梯度,提高了模型的稳定性和训练效果。
阅读全文