我现在有个由.mat文件组成的数据集,数据集格式是这样的,“A”文件下有两个文件夹分别名为“train”和“val”,分别代表了测试集和验证集,测试集下有十个文件夹分别命名为“1”,“2”,一直到“10”,代表了该文件夹下的文件所属目标编号,每个文件夹下有若干个mat文件,每个mat文件存放了一个名为“arr”的矩阵,规格为401*512*7,验证集的结构和测试集类似,请编写一段代码基于vgg神经网络进行的目标分类程序
时间: 2024-01-26 14:04:52 浏览: 139
基于留出法和k折交叉验证的多种神经网络分类预测MATLAB程序:代码中共包含人工神经网络(ANN)、前馈神经网络 (FFNN)、
好的,你可以使用 PyTorch 框架来实现基于 VGG 神经网络进行的目标分类。下面是一个示例代码,可以实现对给定的数据集进行训练和测试:
```python
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader
from scipy.io import loadmat
# 定义数据集类
class MyDataset(Dataset):
def __init__(self, data_dir, transform=None):
self.data_dir = data_dir
self.transform = transform
self.targets = []
self.data = []
for folder in os.listdir(data_dir):
if folder == 'train' or folder == 'val':
folder_path = os.path.join(data_dir, folder)
for target_folder in os.listdir(folder_path):
target_folder_path = os.path.join(folder_path, target_folder)
target = int(target_folder)
for file_name in os.listdir(target_folder_path):
file_path = os.path.join(target_folder_path, file_name)
data = loadmat(file_path)['arr']
self.data.append(data)
self.targets.append(target)
def __getitem__(self, index):
data = self.data[index]
target = self.targets[index]
if self.transform:
data = self.transform(data)
return data, target
def __len__(self):
return len(self.data)
# 定义 VGG 神经网络模型
class VGG(nn.Module):
def __init__(self):
super(VGG, self).__init__()
self.conv1 = nn.Conv2d(7, 64, kernel_size=3, padding=1)
self.conv2 = nn.Conv2d(64, 128, kernel_size=3, padding=1)
self.conv3 = nn.Conv2d(128, 256, kernel_size=3, padding=1)
self.conv4 = nn.Conv2d(256, 512, kernel_size=3, padding=1)
self.conv5 = nn.Conv2d(512, 512, kernel_size=3, padding=1)
self.maxpool = nn.MaxPool2d(kernel_size=2, stride=2)
self.fc1 = nn.Linear(512 * 6 * 8, 4096)
self.fc2 = nn.Linear(4096, 4096)
self.fc3 = nn.Linear(4096, 10)
self.relu = nn.ReLU(inplace=True)
def forward(self, x):
x = self.relu(self.conv1(x))
x = self.maxpool(x)
x = self.relu(self.conv2(x))
x = self.maxpool(x)
x = self.relu(self.conv3(x))
x = self.relu(self.conv4(x))
x = self.maxpool(x)
x = self.relu(self.conv5(x))
x = self.maxpool(x)
x = x.view(-1, 512 * 6 * 8)
x = self.relu(self.fc1(x))
x = self.relu(self.fc2(x))
x = self.fc3(x)
return x
# 定义训练函数
def train(model, train_loader, optimizer, criterion, device):
model.train()
for data, target in train_loader:
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 定义测试函数
def test(model, test_loader, device):
model.eval()
correct = 0
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
acc = 100. * correct / len(test_loader.dataset)
return acc
# 定义主函数
def main():
# 设置参数
data_dir = 'path/to/your/dataset'
batch_size = 32
epochs = 10
lr = 0.001
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 定义数据预处理操作
transform = transforms.Compose([transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])])
# 加载数据集
train_dataset = MyDataset(os.path.join(data_dir, 'train'), transform=transform)
test_dataset = MyDataset(os.path.join(data_dir, 'val'), transform=transform)
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
# 初始化模型、优化器和损失函数
model = VGG().to(device)
optimizer = optim.Adam(model.parameters(), lr=lr)
criterion = nn.CrossEntropyLoss()
# 开始训练和测试
for epoch in range(epochs):
train(model, train_loader, optimizer, criterion, device)
acc = test(model, test_loader, device)
print('Epoch: {}, Test Acc: {:.2f}%'.format(epoch + 1, acc))
if __name__ == '__main__':
main()
```
在这段代码中,我们首先定义了一个 `MyDataset` 类,用于加载和处理数据集。然后定义了一个 `VGG` 类,用于实现 VGG 神经网络模型。接着定义了 `train` 函数和 `test` 函数,分别用于训练和测试模型。最后在 `main` 函数中,我们定义了一些超参数,并初始化了模型、优化器和损失函数,然后开始进行训练和测试。
阅读全文