在AI studio中如何绘制loss核acc曲线,给我参考代码并详细解释
时间: 2024-05-16 20:15:51 浏览: 106
keras绘制acc和loss曲线图实例
3星 · 编辑精心推荐
在AI Studio中,可以使用PaddlePaddle框架内置的VisualDL库来绘制损失和准确率曲线。
以下是一份示例代码和详细解释:
```python
import paddle
from visualdl import LogWriter
# 定义训练过程中的损失函数和准确率函数
def train(epoch, model, optimizer, criterion, train_loader):
model.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
optimizer.clear_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
train_loss += loss.numpy()[0]
# 计算准确率
_, predicted = paddle.max(output, axis=1)
total += target.shape[0]
correct += (predicted.numpy() == target.numpy()).sum().item()
acc = 100. * correct / total
train_loss = train_loss / len(train_loader.dataset)
print('Epoch: {} Train Loss: {:.6f} Train Acc: {:.2f}%'.format(
epoch, train_loss, acc))
# 将损失和准确率写入VisualDL
with LogWriter(logdir='./log/train') as writer:
writer.add_scalar(tag="Train/loss", step=epoch, value=train_loss)
writer.add_scalar(tag="Train/acc", step=epoch, value=acc)
# 定义测试过程中的损失函数和准确率函数
def test(epoch, model, criterion, test_loader):
model.eval()
test_loss = 0
correct = 0
total = 0
with paddle.no_grad():
for batch_idx, (data, target) in enumerate(test_loader):
output = model(data)
loss = criterion(output, target)
test_loss += loss.numpy()[0]
# 计算准确率
_, predicted = paddle.max(output, axis=1)
total += target.shape[0]
correct += (predicted.numpy() == target.numpy()).sum().item()
acc = 100. * correct / total
test_loss = test_loss / len(test_loader.dataset)
print('Epoch: {} Test Loss: {:.6f} Test Acc: {:.2f}%'.format(
epoch, test_loss, acc))
# 将损失和准确率写入VisualDL
with LogWriter(logdir='./log/test') as writer:
writer.add_scalar(tag="Test/loss", step=epoch, value=test_loss)
writer.add_scalar(tag="Test/acc", step=epoch, value=acc)
# 在训练和测试过程中调用train和test函数,并传入VisualDL的LogWriter对象即可
with LogWriter(logdir='./log') as writer:
for epoch in range(1, 11):
train(epoch, model, optimizer, criterion, train_loader)
test(epoch, model, criterion, test_loader)
```
上述代码中,我们首先定义了train和test函数来进行训练和测试,其中会计算每个epoch的损失和准确率,并将其写入VisualDL。在train和test函数中,我们通过LogWriter创建了两个不同的LogWriter对象,分别用于记录训练和测试过程中的损失和准确率。在每个epoch结束后,我们将损失和准确率写入对应的LogWriter对象中,tag为"Train/loss"、"Train/acc"、"Test/loss"和"Test/acc",step为当前epoch数,value为损失和准确率的值。
最后,我们在整个训练和测试过程中都使用了一个LogWriter对象,用于记录整个训练和测试过程中的损失和准确率。我们在创建LogWriter对象时,将logdir参数设置为"./log",表示将日志存储在当前目录下的log文件夹中。运行训练和测试代码后,可以在log文件夹中看到生成的VisualDL日志文件,打开VisualDL即可看到损失和准确率曲线。
阅读全文