解释这段代码:function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) %------------------------------------------------------------------------------% % Initialize初始化 %------------------------------------------------------------------------------% gold = (sqrt(5)+1)/2 ; SigmaInit = Sigma; SigmaNew = SigmaInit; NormGrad = sum(abs(GradNew)); GradNew=GradNew/NormGrad; CostOld=CostNew;

时间: 2023-07-16 08:11:39 浏览: 134
这段代码实现了一个名为 "graphupdate" 的函数,并定义了输入参数 KH、Sigma、GradNew、CostNew 和 option,以及输出参数 Sigma、S 和 CostNew。 接下来是函数的主体部分,它开始执行初始化操作。gold 变量被初始化为黄金比例,SigmaInit 和 SigmaNew 变量被初始化为输入参数 Sigma。NormGrad 变量计算了 GradNew 的绝对值之和,GradNew 变量被标准化为其绝对值之和,以便在后续计算过程中进行更准确的比较。CostOld 变量被初始化为 CostNew。 这段代码实现了一个优化算法的一步更新过程,具体实现需要结合后续代码进行分析。
相关问题

详细解释这段代码function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) gold = (sqrt(5)+1)/2 ; SigmaNew = SigmaInit= Sigma ; NormGrad = sum(abs(GradNew)); CostOld=CostNew=GradNew/NormGrad; [val,coord] = max(SigmaNew) ; GradNew = GradNew - GradNew(coord); desc = - GradNew.* ( (SigmaNew>0) | (GradNew<0) ); desc(coord) = - sum(desc); stepmin = 0; costmin = CostOld; costmax = 0; ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end

这段代码实现了一个图更新算法,用于优化一个图的布局。具体而言,输入参数包括: - KH: 图的邻接矩阵; - Sigma: 布局矩阵,即每个点在二维空间中的坐标; - GradNew: 梯度向量,表示当前布局的梯度; - CostNew: 当前布局的代价; - option: 控制图更新算法的参数。 根据输入参数,该算法首先计算出当前梯度的模长NormGrad,并将GradNew除以该模长,以避免梯度大小对更新步长的影响。然后,算法依次进行以下步骤: 1. 初始化SigmaNew为当前布局,SigmaInit为当前布局的备份。 2. 找到SigmaNew中的最大值和对应的坐标coord,将GradNew中在该坐标上的梯度从GradNew中减去,以避免在该坐标方向上的更新。 3. 计算更新方向desc,其中对于SigmaNew中小于等于0的元素,不需要在该维度上进行更新;对于GradNew中小于0的元素,也不需要在该维度上进行更新。 4. 设置stepmin和stepmax为合适的初值,并计算在stepmax处的代价costmax和在stepmin处的代价costmin。如果desc中没有小于0的元素,则返回SigmaNew作为更新后的布局。 5. 在[stepmin, stepmax]区间内使用黄金分割法寻找代价最小的更新步长。具体而言,算法将该区间分成左右两个子区间,计算在每个子区间的中点处的代价,然后选择代价更小的子区间继续寻找。这个过程一直进行,直到更新步长的变化量小于设定的阈值goldensearch_deltmax或者步长stepmax小于一个极小值eps。 6. 最后返回更新后的布局矩阵Sigma、更新后的代价CostNew和更新后的图S。

function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) gold = (sqrt(5)+1)/2 ; SigmaNew = SigmaInit= Sigma ; NormGrad = sum(abs(GradNew)); CostOld=CostNew=GradNew/NormGrad; [val,coord] = max(SigmaNew) ; GradNew = GradNew - GradNew(coord); desc = - GradNew.* ( (SigmaNew>0) | (GradNew<0) ); desc(coord) = - sum(desc); stepmin = 0; costmin = CostOld; costmax = 0; ind = find(desc<0); stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; if isempty(stepmax) || stepmax==0 Sigma = SigmaNew; return end if stepmax > 0.1 stepmax=0.1; end while costmax<costmin [costmax, S] = costgraph(KH,stepmax,desc,SigmaNew); if costmax<costmin costmin = costmax; SigmaNew = SigmaNew + stepmax * desc; desc = desc .* ( (SigmaNew>option.numericalprecision)|(desc>0)); desc(coord) = - sum(desc([[1:coord-1] [coord+1:end]])); ind = find(desc<0); if ~isempty(ind) stepmax = min(-(SigmaNew(ind))./desc(ind)); deltmax = stepmax; costmax = 0; else stepmax = 0; deltmax = 0; end end end Step = [stepmin stepmax]; Cost = [costmin costmax]; [val,coord] = min(Cost); while (stepmax-stepmin)>option.goldensearch_deltmax*(abs(deltmax)) && stepmax > eps stepmedr = stepmin+(stepmax-stepmin)/gold; stepmedl = stepmin+(stepmedr-stepmin)/gold; [costmedr, S1] = costgraph(KH,stepmedr,desc,SigmaNew); [costmedl, S2] = costgraph(KH,stepmedl,desc,SigmaNew); Step = [stepmin stepmedl stepmedr stepmax]; Cost = [costmin costmedl costmedr costmax]; [val,coord] = min(Cost); switch coord case 1 stepmax = stepmedl; costmax = costmedl; S = S2; case 2 stepmax = stepmedr; costmax = costmedr; S = S2; case 3 stepmin = stepmedl; costmin = costmedl; S = S2; case 4 stepmin = stepmedr; costmin = costmedr; S = S1; end end

这段代码是一个用于更新图的算法,它使用了黄金分割法来找到最小化代价函数的步长。主要输入参数包括KH(图的邻接矩阵)、Sigma(节点的位置坐标)、GradNew(节点的梯度信息)、CostNew(节点代价函数值)和option(算法参数)。输出参数包括Sigma(更新后的节点位置坐标)、S(更新后的图形结构)和CostNew(更新后的节点代价函数值)。 该算法的核心思想是通过调整节点位置坐标来最小化整个图的代价函数。在每次迭代中,算法会计算当前节点位置的梯度信息,并根据梯度信息和当前节点位置坐标来计算出一个方向(desc),然后使用黄金分割法来找到最小化代价函数的步长。最终,通过更新节点位置坐标来更新整个图的结构,并计算出新的代价函数值。
阅读全文

相关推荐

大家在看

recommend-type

pjsip开发指南

pjsip是一个开源的sip协议栈,这个文档主要对sip开发的框架进行说明
recommend-type

RTX 3.6 SDK 基于Windows实时操作系统

RTX 3.6 SDK
recommend-type

网络信息系统应急预案-网上银行业务持续性计划与应急预案

包含4份应急预案 网络信息系统应急预案.doc 信息系统应急预案.DOCX 信息系统(系统瘫痪)应急预案.doc 网上银行业务持续性计划与应急预案.doc
recommend-type

基于区间组合移动窗口法筛选近红外光谱信息

基于区间组合移动窗口法筛选近红外光谱信息
recommend-type

毕业设计&课设-MATLAB的光场工具箱.zip

matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随时与博主沟通,第一时间进行解答! matlab算法,工具源码,适合毕业设计、课程设计作业,所有源码均经过严格测试,可以直接运行,可以放心下载使用。有任何使用问题欢迎随

最新推荐

recommend-type

《MATLAB的S-Function编写指导》——完整版.pdf

这份《MATLAB的S-Function编写指导》旨在帮助初学者理解和掌握S-Function的基本概念和编写技巧。 首先,S-Function概述部分强调了其在Simulink中的重要性。Simulink是MATLAB的一个扩展,支持基于模型和基于系统的设...
recommend-type

VUE元素的隐藏和显示(v-show指令)

在 Vue 框架中,元素的隐藏和显示是一个非常常见的需求,而 v-show 指令正是为了满足这个需求而生的。v-show 指令可以根据条件来控制元素的显示或隐藏,它是一个非常有用的指令,下面我们来详细介绍它的使用方法。 ...
recommend-type

使用Vue中 v-for循环列表控制按钮隐藏显示功能

这段代码中,当`listLZPar.operate_type`不为空时,对应的按钮(或包含按钮的`div.leftProcess`)将显示出来。 在处理列表内的事件绑定时,通常需要区分当前激活的元素。对于防止事件冒泡,确保点击事件只对当前...
recommend-type

keep-alive不能缓存多层级路由菜单问题解决

export function filterAsyncRouter(routerlist) { const routerlists = tree(routerlist); // 获取路由信息 // ... } ``` 在`filterAsyncRouter`函数中,我们遍历并修改每个路由对象,删除不必要的属性,设置组件...
recommend-type

vue里面v-bind和Props 利用props绑定动态数据的方法

在示例代码中,`&lt;add v-bind:子组件的值="父组件的属性"&gt;&lt;/add&gt;` 中的 `v-bind` 就是用来绑定父组件的属性值到子组件的属性上。这里的 `子组件的值` 是子组件接收的属性名称,而 `父组件的属性` 是父组件中对应的...
recommend-type

WildFly 8.x中Apache Camel结合REST和Swagger的演示

资源摘要信息:"CamelEE7RestSwagger:Camel on EE 7 with REST and Swagger Demo" 在深入分析这个资源之前,我们需要先了解几个关键的技术组件,它们是Apache Camel、WildFly、Java DSL、REST服务和Swagger。下面是这些知识点的详细解析: 1. Apache Camel框架: Apache Camel是一个开源的集成框架,它允许开发者采用企业集成模式(Enterprise Integration Patterns,EIP)来实现不同的系统、应用程序和语言之间的无缝集成。Camel基于路由和转换机制,提供了各种组件以支持不同类型的传输和协议,包括HTTP、JMS、TCP/IP等。 2. WildFly应用服务器: WildFly(以前称为JBoss AS)是一款开源的Java应用服务器,由Red Hat开发。它支持最新的Java EE(企业版Java)规范,是Java企业应用开发中的关键组件之一。WildFly提供了一个全面的Java EE平台,用于部署和管理企业级应用程序。 3. Java DSL(领域特定语言): Java DSL是一种专门针对特定领域设计的语言,它是用Java编写的小型语言,可以在Camel中用来定义路由规则。DSL可以提供更简单、更直观的语法来表达复杂的集成逻辑,它使开发者能够以一种更接近业务逻辑的方式来编写集成代码。 4. REST服务: REST(Representational State Transfer)是一种软件架构风格,用于网络上客户端和服务器之间的通信。在RESTful架构中,网络上的每个资源都被唯一标识,并且可以使用标准的HTTP方法(如GET、POST、PUT、DELETE等)进行操作。RESTful服务因其轻量级、易于理解和使用的特性,已经成为Web服务设计的主流风格。 5. Swagger: Swagger是一个开源的框架,它提供了一种标准的方式来设计、构建、记录和使用RESTful Web服务。Swagger允许开发者描述API的结构,这样就可以自动生成文档、客户端库和服务器存根。通过Swagger,可以清晰地了解API提供的功能和如何使用这些API,从而提高API的可用性和开发效率。 结合以上知识点,CamelEE7RestSwagger这个资源演示了如何在WildFly应用服务器上使用Apache Camel创建RESTful服务,并通过Swagger来记录和展示API信息。整个过程涉及以下几个技术步骤: - 首先,需要在WildFly上设置和配置Camel环境,确保Camel能够运行并且可以作为路由引擎来使用。 - 其次,通过Java DSL编写Camel路由,定义如何处理来自客户端的HTTP请求,并根据请求的不同执行相应的业务逻辑。 - 接下来,使用Swagger来记录和描述创建的REST API。这包括定义API的路径、支持的操作、请求参数和响应格式等。 - 最后,通过Swagger提供的工具生成API文档和客户端代码,以及服务器端的存根代码,从而使得开发者可以更加便捷地理解和使用这些RESTful服务。 这个资源的实践演示对于想要学习如何在Java EE平台上使用Camel集成框架,并且希望提供和记录REST服务的开发者来说是非常有价值的。通过这种方式,开发者可以更加快速和简单地创建和管理Web服务,同时也增强了API的可访问性和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通

![【声子晶体模拟全能指南】:20年经验技术大佬带你从入门到精通](https://docs.lammps.org/_images/lammps-gui-main.png) # 摘要 声子晶体作为一种具有周期性结构的材料,在声学隐身、微波和红外领域具有广泛的应用潜力。本文从基础理论出发,深入探讨了声子晶体的概念、物理模型和声子带结构的理论解析,同时介绍了声子晶体的数值模拟方法,包括有限元方法(FEM)、离散元方法(DEM)和分子动力学(MD)。本文还提供了一套完整的声子晶体模拟实践指南,涵盖了模拟前的准备工作、详细的模拟步骤以及结果验证和案例分析。此外,文章探讨了声子晶体模拟的高级技巧和拓展
recommend-type

2024-07-27怎么用python转换成农历日期

在Python中,可以使用`lunarcalendar`库来将公历日期转换为农历日期。首先,你需要安装这个库,可以通过pip命令进行安装: ```bash pip install lunarcalendar ``` 安装完成后,你可以使用以下代码将公历日期转换为农历日期: ```python from lunarcalendar import Converter, Solar, Lunar, DateNotExist # 创建一个公历日期对象 solar_date = Solar(2024, 7, 27) # 将公历日期转换为农历日期 try: lunar_date = Co
recommend-type

FDFS客户端Python库1.2.6版本发布

资源摘要信息:"FastDFS是一个开源的轻量级分布式文件系统,它对文件进行管理,功能包括文件存储、文件同步、文件访问等,适用于大规模文件存储和高并发访问场景。FastDFS为互联网应用量身定制,充分考虑了冗余备份、负载均衡、线性扩容等机制,保证系统的高可用性和扩展性。 FastDFS 架构包含两个主要的角色:Tracker Server 和 Storage Server。Tracker Server 作用是负载均衡和调度,它接受客户端的请求,为客户端提供文件访问的路径。Storage Server 作用是文件存储,一个 Storage Server 中可以有多个存储路径,文件可以存储在不同的路径上。FastDFS 通过 Tracker Server 和 Storage Server 的配合,可以完成文件上传、下载、删除等操作。 Python 客户端库 fdfs-client-py 是为了解决 FastDFS 文件系统在 Python 环境下的使用。fdfs-client-py 使用了 Thrift 协议,提供了文件上传、下载、删除、查询等接口,使得开发者可以更容易地利用 FastDFS 文件系统进行开发。fdfs-client-py 通常作为 Python 应用程序的一个依赖包进行安装。 针对提供的压缩包文件名 fdfs-client-py-master,这很可能是一个开源项目库的名称。根据文件名和标签“fdfs”,我们可以推测该压缩包包含的是 FastDFS 的 Python 客户端库的源代码文件。这些文件可以用于构建、修改以及扩展 fdfs-client-py 功能以满足特定需求。 由于“标题”和“描述”均与“fdfs-client-py-master1.2.6.zip”有关,没有提供其它具体的信息,因此无法从标题和描述中提取更多的知识点。而压缩包文件名称列表中只有一个文件“fdfs-client-py-master”,这表明我们目前讨论的资源摘要信息是基于对 FastDFS 的 Python 客户端库的一般性了解,而非基于具体文件内容的分析。 根据标签“fdfs”,我们可以深入探讨 FastDFS 相关的概念和技术细节,例如: - FastDFS 的分布式架构设计 - 文件上传下载机制 - 文件同步机制 - 元数据管理 - Tracker Server 的工作原理 - Storage Server 的工作原理 - 容错和数据恢复机制 - 系统的扩展性和弹性伸缩 在实际使用中,开发者可以通过 fdfs-client-py 库来与 FastDFS 文件系统进行交互,利用其提供的 API 接口实现文件的存储、管理等功能,从而开发出高效、可靠的文件处理应用。开发者可以根据项目的实际需求,选择合适的 FastDFS 版本,并根据官方文档进行安装、配置及优化,确保系统稳定运行。 总的来说,fdfs-client-py 是 FastDFS 文件系统与 Python 应用之间的一座桥梁,它使得开发者能够更加方便地将 FastDFS 集成到基于 Python 开发的应用中,发挥出 FastDFS 在文件管理方面的优势。"