解释这段代码:function [Sigma,S,CostNew] = graphupdate(KH,Sigma,GradNew,CostNew,option) %------------------------------------------------------------------------------% % Initialize初始化 %------------------------------------------------------------------------------% gold = (sqrt(5)+1)/2 ; SigmaInit = Sigma; SigmaNew = SigmaInit; NormGrad = sum(abs(GradNew)); GradNew=GradNew/NormGrad; CostOld=CostNew;
时间: 2023-07-16 14:11:39 浏览: 128
sigma-pathfinding-astar:Sigma.js的A *实现
这段代码实现了一个名为 "graphupdate" 的函数,并定义了输入参数 KH、Sigma、GradNew、CostNew 和 option,以及输出参数 Sigma、S 和 CostNew。
接下来是函数的主体部分,它开始执行初始化操作。gold 变量被初始化为黄金比例,SigmaInit 和 SigmaNew 变量被初始化为输入参数 Sigma。NormGrad 变量计算了 GradNew 的绝对值之和,GradNew 变量被标准化为其绝对值之和,以便在后续计算过程中进行更准确的比较。CostOld 变量被初始化为 CostNew。
这段代码实现了一个优化算法的一步更新过程,具体实现需要结合后续代码进行分析。
阅读全文