self.lambda_step = nn.Parameter(torch.Tensor([0.5])) self.atten = Atten(31) self.nonlo = blockNL(channels=31)
时间: 2024-02-22 14:01:34 浏览: 124
这是一个神经网络模型的代码片段,其中nn.Parameter是一个将张量包装成模型参数的函数,self.lambda_step是一个模型参数,其值为0.5。Atten是一个自定义的注意力机制模块,其输入通道数为31。blockNL是一个非线性变换模块,用于对输入特征进行非线性变换,其输入通道数也为31。self.atten和self.nonlo都是该模型中的子模块。
相关问题
class GradientDecoupleLayer(Function): @staticmethod def forward(ctx, x, _lambda): ctx._lambda = _lambda return x @staticmethod def backward(ctx, grad_output): grad_output = grad_output * ctx._lambda return grad_output, None class AffineLayer(nn.Module): def __init__(self, num_channels, bias=False): super(AffineLayer, self).__init__() weight = torch.FloatTensor(1, num_channels, 1, 1).fill_(1) self.weight = nn.Parameter(weight, requires_grad=True) self.bias = None if bias: bias = torch.FloatTensor(1, num_channels, 1, 1).fill_(0) self.bias = nn.Parameter(bias, requires_grad=True) def forward(self, X): out = X * self.weight.expand_as(X) if self.bias is not None: out = out + self.bias.expand_as(X) return out def decouple_layer(x, _lambda): return GradientDecoupleLayer.apply(x, _lambda)
这段代码看起来是 PyTorch 的代码,其中定义了两个类:GradientDecoupleLayer 和 AffineLayer。GradientDecoupleLayer 是一个自定义的 PyTorch 函数,实现了一个梯度解耦的功能;AffineLayer 是一个继承自 nn.Module 的类,实现了一个仿射变换的功能。其中,AffineLayer 的实现比较简单,就是将输入 X 乘上一个可学习的权重参数 self.weight,再加上一个可选的偏置参数 self.bias;而 GradientDecoupleLayer 则是比较复杂的一个函数,它的作用是将输入 x 的梯度乘上一个常数 _lambda,然后输出。这个函数的实现用到了 PyTorch 的静态方法 apply,并且在 backward 函数中返回了梯度 grad_output 乘上 _lambda 的结果。
阅读全文