给我CBAM注意力机制的matlab代码
时间: 2023-06-15 11:08:32 浏览: 538
【深度学习】CBAM注意力机制实现Python源代码.zip
5星 · 资源好评率100%
下面是CBAM注意力机制的Matlab代码:
```matlab
function [out, A] = cbam_attention(x, channels, reduction_ratio, pool_kernel_size)
% x: input feature map (H x W x C)
% channels: number of output channels
% reduction_ratio: reduction ratio of fully connected layers
% pool_kernel_size: kernel size for max pooling layers
% channel-wise average pooling
avg_pool = squeeze(mean(mean(x, 1), 2)); % (C x 1)
% fully connected layers for channel-wise attention
fc1 = fc_layer(avg_pool, channels / reduction_ratio, 'relu'); % (C / r x 1)
fc2 = fc_layer(fc1, channels, 'sigmoid'); % (C x 1)
% reshape to (1 x 1 x C)
channel_attention = reshape(fc2, [1, 1, channels]);
% spatial-wise attention
max_pool = max_pool_layer(x, pool_kernel_size); % (H x W x C)
avg_pool = avg_pool_layer(x, pool_kernel_size); % (H x W x C)
concat = cat(3, max_pool, avg_pool); % (H x W x 2C)
conv1 = conv_layer(concat, channels / reduction_ratio, [1, 1], 'relu'); % (H x W x C / r)
conv2 = conv_layer(conv1, channels, [1, 1], 'sigmoid'); % (H x W x C)
% element-wise multiplication
spatial_attention = conv2; % (H x W x C)
out = x .* (channel_attention .* spatial_attention); % (H x W x C)
% attention map visualization
A = channel_attention .* spatial_attention; % (H x W x C)
end
function y = fc_layer(x, out_dim, activation)
% fully connected layer
% x: input tensor (in_dim x batch_size)
% out_dim: output dimension
% activation: activation function ('relu' or 'sigmoid')
[in_dim, batch_size] = size(x);
W = normrnd(0, 0.01, [out_dim, in_dim]);
b = zeros(out_dim, 1);
y = W * x + b;
if strcmp(activation, 'relu')
y = relu(y);
elseif strcmp(activation, 'sigmoid')
y = sigmoid(y);
end
end
function y = conv_layer(x, out_channels, kernel_size, activation)
% convolutional layer
% x: input tensor (H x W x in_channels)
% out_channels: number of output channels
% kernel_size: kernel size (height x width)
% activation: activation function ('relu' or 'sigmoid')
[H, W, in_channels] = size(x);
W = normrnd(0, 0.01, [kernel_size, kernel_size, in_channels, out_channels]);
b = zeros(out_channels, 1);
y = convn(x, W, 'valid');
y = y + b';
if strcmp(activation, 'relu')
y = relu(y);
elseif strcmp(activation, 'sigmoid')
y = sigmoid(y);
end
end
function y = max_pool_layer(x, kernel_size)
% max pooling layer
% x: input tensor (H x W x C)
% kernel_size: kernel size (height x width)
y = nlfilter(x, [kernel_size, kernel_size], @(x)max(x(:)));
end
function y = avg_pool_layer(x, kernel_size)
% average pooling layer
% x: input tensor (H x W x C)
% kernel_size: kernel size (height x width)
y = nlfilter(x, [kernel_size, kernel_size], @(x)mean(x(:)));
end
function y = relu(x)
% ReLU activation function
y = max(x, 0);
end
function y = sigmoid(x)
% sigmoid activation function
y = 1 ./ (1 + exp(-x));
end
```
阅读全文