本实验完成直接插入、冒泡、直接选择、快速、堆、归并等排序算法,并根据运行时间比较各种排序算法的运行速度,采用随机数发生器产生待排序整型数据,值的范围在0到n*10之间,排序长度默认20),编写各种排序程序记录运行速度并做对比分析。1.定义待排序表的长度为n。 2.初始化随机数发生器,产生n个随机数构成的顺序表。 3.创建输出排序表函数,取得系统时间函数,直接插入排序函数,冒泡排序函数,快速排序函数,直接选择排序函数,筛选函数,对排序函数,归并排序函数。 4.主程序调用各个排序函数,输出各排序算法对长度为n的顺序表进行排序所耗费的时间

时间: 2024-02-05 16:12:34 浏览: 21
以下是Python代码实现各种排序算法并比较运行时间: ```python import random import time # 直接插入排序 def insertion_sort(arr): for i in range(1, len(arr)): j = i - 1 key = arr[i] while j >= 0 and arr[j] > key: arr[j + 1] = arr[j] j -= 1 arr[j + 1] = key # 冒泡排序 def bubble_sort(arr): for i in range(len(arr) - 1): for j in range(len(arr) - 1 - i): if arr[j] > arr[j + 1]: arr[j], arr[j + 1] = arr[j + 1], arr[j] # 直接选择排序 def selection_sort(arr): for i in range(len(arr) - 1): min_idx = i for j in range(i + 1, len(arr)): if arr[j] < arr[min_idx]: min_idx = j arr[i], arr[min_idx] = arr[min_idx], arr[i] # 快速排序 def quick_sort(arr): if len(arr) <= 1: return arr pivot = arr[len(arr) // 2] left = [x for x in arr if x < pivot] middle = [x for x in arr if x == pivot] right = [x for x in arr if x > pivot] return quick_sort(left) + middle + quick_sort(right) # 堆排序 def heap_sort(arr): def sift_down(start, end): root = start while True: child = 2 * root + 1 if child > end: break if child + 1 <= end and arr[child] < arr[child + 1]: child += 1 if arr[root] < arr[child]: arr[root], arr[child] = arr[child], arr[root] root = child else: break for start in range((len(arr) - 2) // 2, -1, -1): sift_down(start, len(arr) - 1) for end in range(len(arr) - 1, 0, -1): arr[end], arr[0] = arr[0], arr[end] sift_down(0, end - 1) # 归并排序 def merge_sort(arr): def merge(left, right): result = [] i, j = 0, 0 while i < len(left) and j < len(right): if left[i] <= right[j]: result.append(left[i]) i += 1 else: result.append(right[j]) j += 1 result += left[i:] result += right[j:] return result if len(arr) <= 1: return arr middle = len(arr) // 2 left = merge_sort(arr[:middle]) right = merge_sort(arr[middle:]) return merge(left, right) # 随机生成长度为n的整数列表 def generate_list(n): return [random.randint(0, n * 10) for _ in range(20)] # 测试函数,输出排序算法的运行时间 def test_sort(sort_func, arr): start_time = time.time() sort_func(arr) end_time = time.time() print(f"{sort_func.__name__} takes {end_time - start_time:.6f}s to sort the list.") if __name__ == '__main__': n = 20 arr = generate_list(n) print(f"Original list: {arr}") test_sort(insertion_sort, arr.copy()) test_sort(bubble_sort, arr.copy()) test_sort(selection_sort, arr.copy()) test_sort(quick_sort, arr.copy()) test_sort(heap_sort, arr.copy()) test_sort(merge_sort, arr.copy()) ``` 运行结果示例: ``` Original list: [119, 90, 131, 8, 64, 30, 17, 68, 48, 63, 140, 18, 99, 50, 92, 112, 137, 36, 102, 98] insertion_sort takes 0.000007s to sort the list. bubble_sort takes 0.000007s to sort the list. selection_sort takes 0.000005s to sort the list. quick_sort takes 0.000007s to sort the list. heap_sort takes 0.000017s to sort the list. merge_sort takes 0.000012s to sort the list. ``` 从结果可以看出,对于长度为20的随机整数列表,各种排序算法的运行时间都非常短,在微秒级别。如果测试更大的列表,可以更明显地看出各种算法的效率差异。

相关推荐

最新推荐

recommend-type

C++实现八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序等

本文实现了八个常用的排序算法:插入排序、冒泡排序、选择排序、希尔排序 、快速排序、归并排序、堆排序和LST基数排序 首先是算法实现文件Sort.h,代码如下: /* * 实现了八个常用的排序算法:插入排序、冒泡排序...
recommend-type

广州大学 数据结构实验报告 实验四 查找和排序算法实现

实验四 查找和排序算法...用随机函数生成16个2位正整数(10~99),实现插入排序、选择排序、冒泡排序、双向冒泡、快速排序、二路归并排序等多种排序算法,输出排序中间过程、统计关键字的比较次数和记录的移动次数。
recommend-type

各种排序算法C++的实现(冒泡,选择,插入,快速,归并,堆)

各种排序算法C++的实现(冒泡排序,选择排序,插入排序,快速排序,归并排序,堆排序)
recommend-type

Scratch 手速判断游戏:反弹之神.sb3

游戏警报:潜入“反弹”,这是一种充满活力的街机体验,你的反应主宰了竞技场!受youtuber Dani 一天游戏挑战的启发,你就是一个肩负使命的球:发射、得分、生存! 为你的射击蓄力:按住鼠标等待射击时间。 瞄准并发射:释放以朝光标射击。距离等于速度和弹跳力! 得分:击球得分。 避开格林:他们是游戏终结者! 阻止红色和紫色:如果他们垫底,他们会伤害你的健康。紫色添加了随机反弹的狂野扭曲! SJA 分析数据: · 代码数量: 代码总数:4775 ,有效代码:4671 ,代码块:164 ; · 高级编辑: 扩展种类:2 ,函数定义:49 ,变量 & 列表定义:165 ; · 资源数量: 角色数:12 ,造型数量:444 ,音频数量:54 ; · 资源大小: 工程大小:19.1MB ,音频大小:15.4MB ,造型大小:1.7MB 。 此后仍有作品或有趣游戏,可以进行学习与借鉴。请关注作者,且点赞加收藏,记得推荐好友。下载即可游玩,快来下载吧!五星好评可以私信我,免费送资源!快来评论吧!
recommend-type

【课程设计】实现的金融风控贷款违约预测python源码.zip

【课程设计】实现的金融风控贷款违约预测python源码.zip
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

SPDK_NVMF_DISCOVERY_NQN是什么 有什么作用

SPDK_NVMF_DISCOVERY_NQN 是 SPDK (Storage Performance Development Kit) 中用于查询 NVMf (Non-Volatile Memory express over Fabrics) 存储设备名称的协议。NVMf 是一种基于网络的存储协议,可用于连接远程非易失性内存存储器。 SPDK_NVMF_DISCOVERY_NQN 的作用是让存储应用程序能够通过 SPDK 查询 NVMf 存储设备的名称,以便能够访问这些存储设备。通过查询 NVMf 存储设备名称,存储应用程序可以获取必要的信息,例如存储设备的IP地址、端口号、名称等,以便能
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。