pytorch中使用mtcnn
时间: 2023-09-01 14:10:48 浏览: 126
MTCNN是一种用于人脸检测和对齐的深度学习模型,可以使用PyTorch实现。以下是在PyTorch中使用MTCNN进行人脸检测和对齐的基本步骤:
1. 安装MTCNN库:可以使用pip安装mtcnn库
```
pip install mtcnn
```
2. 导入MTCNN库
```python
from mtcnn import MTCNN
```
3. 加载MTCNN模型
```python
detector = MTCNN()
```
4. 加载图像并进行人脸检测和对齐
```python
import cv2
import matplotlib.pyplot as plt
# 加载图像
img = cv2.imread('test.jpg')
# 人脸检测和对齐
faces = detector.detect_faces(img)
for face in faces:
# 获取人脸框坐标
x, y, w, h = face['box']
# 绘制人脸框
cv2.rectangle(img, (x, y), (x+w, y+h), (0, 255, 0), 2)
# 获取关键点坐标
keypoints = face['keypoints']
# 绘制关键点
cv2.circle(img, (keypoints['left_eye']), 2, (0, 0, 255), 2)
cv2.circle(img, (keypoints['right_eye']), 2, (0, 0, 255), 2)
cv2.circle(img, (keypoints['nose']), 2, (0, 0, 255), 2)
cv2.circle(img, (keypoints['mouth_left']), 2, (0, 0, 255), 2)
cv2.circle(img, (keypoints['mouth_right']), 2, (0, 0, 255), 2)
# 显示结果
plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
plt.show()
```
以上就是使用MTCNN进行人脸检测和对齐的基本步骤,你可以根据自己的需要进行修改。
阅读全文
相关推荐

















