import nibabel as nib怎么安装
时间: 2023-11-25 20:08:50 浏览: 210
你可以使用pip来安装nibabel模块,具体步骤如下:
1. 打开命令行窗口(Windows用户可以按下Win+R键,在弹出的窗口中输入cmd并回车)。
2. 输入以下命令并回车:
```
pip install nibabel
```
3. 等待安装完成即可。
如果你使用的是Anaconda环境,则可以使用conda命令来安装:
```
conda install -c conda-forge nibabel
```
希望这个回答能够帮到你!
相关问题
替换掉此代码里的import cv2模块,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\" + "segmentation-" + name filepath_vol = niifilepath + "volume\" + "volume-" +name savepath_seg = savepath + "segmentation\" savepath_vol = savepath + "volume\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if name == 'main': path= 'E:\dataset\LiTS17\' savepath = 'E:\dataset\LiTS17\2d\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
将import cv2替换为from PIL import Image即可,函数中用到了cv2.threshold函数,可以使用PIL中的ImageOps.autocontrast()函数代替。修改后的代码如下:
```python
import os
import numpy as np
import nibabel as nib
import imageio
from PIL import Image, ImageOps
def read_niifile(niifilepath): # 读取niifile文件
img = nib.load(niifilepath) # 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name): # 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" +name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = Image.fromarray(silce_seg.astype(np.uint8))
silce_seg = ImageOps.autocontrast(silce_seg,1)
silce_seg = np.array(silce_seg)
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
num += 1
# 将切片信息保存为png格式
return num
if __name__ == '__main__':
path= 'E:\\dataset\\LiTS17\\'
savepath = 'E:\\dataset\\LiTS17\\2d\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
将代码中的import cv2模块替换掉,import os import numpy as np import nibabel as nib import imageio import cv2 def read_niifile(niifilepath): # 读取niifile文件 img = nib.load(niifilepath) # 提取niifile文件 img_fdata = img.get_fdata(dtype='float32') return img_fdata def save_fig(niifilepath, savepath, num, name): # 保存为图片 name = name.split('-')[1] filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name filepath_vol = niifilepath + "volume\\" + "volume-" +name savepath_seg = savepath + "segmentation\\" savepath_vol = savepath + "volume\\" if not os.path.exists(savepath_seg): os.makedirs(savepath_seg) if not os.path.exists(savepath_vol): os.makedirs(savepath_vol) fdata_vol = read_niifile(filepath_vol) fdata_seg = read_niifile(filepath_seg) (x, y, z) = fdata_seg.shape total = x * y for k in range(z): silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片 if silce_seg.max() == 0: continue else: silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255 silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1] if (np.sum(silce_seg == 255) / total) > 0.015: silce_vol = fdata_vol[:, :, k] silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255 imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg) imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol) num += 1 # 将切片信息保存为png格式 return num if __name__ == '__main__': path= 'E:\\dataset\\LiTS17\\' savepath = 'E:\\dataset\\LiTS17\\2d\\' filenames = os.listdir(path + "segmentation") num = 0 for filename in filenames: num = save_fig(path, savepath, num, filename)
替后的代码如下:
```python
import os
import numpy as np
import nibabel as nib
import imageio
def read_niifile(niifilepath): # 读取niifile文件
img = nib.load(niifilepath) # 提取niifile文件
img_fdata = img.get_fdata(dtype='float32')
return img_fdata
def save_fig(niifilepath, savepath, num, name): # 保存为图片
name = name.split('-')[1]
filepath_seg = niifilepath + "segmentation\\" + "segmentation-" + name
filepath_vol = niifilepath + "volume\\" + "volume-" +name
savepath_seg = savepath + "segmentation\\"
savepath_vol = savepath + "volume\\"
if not os.path.exists(savepath_seg):
os.makedirs(savepath_seg)
if not os.path.exists(savepath_vol):
os.makedirs(savepath_vol)
fdata_vol = read_niifile(filepath_vol)
fdata_seg = read_niifile(filepath_seg)
(x, y, z) = fdata_seg.shape
total = x * y
for k in range(z):
silce_seg = fdata_seg[:, :, k] # 三个位置表示三个不同角度的切片
if silce_seg.max() == 0:
continue
else:
silce_seg = (silce_seg-silce_seg.min())/(silce_seg.max() - silce_seg.min())*255
silce_seg = cv2.threshold(silce_seg, 1, 255, cv2.THRESH_BINARY)[1]
if (np.sum(silce_seg == 255) / total) > 0.015:
silce_vol = fdata_vol[:, :, k]
silce_vol = (silce_vol - silce_vol.min()) / (silce_vol.max() - silce_vol.min()) * 255
imageio.imwrite(os.path.join(savepath_seg, '{}.png'.format(num)), silce_seg)
imageio.imwrite(os.path.join(savepath_vol, '{}.png'.format(num)), silce_vol)
num += 1
# 将切片信息保存为png格式
return num
if __name__ == '__main__':
path= 'E:\\dataset\\LiTS17\\'
savepath = 'E:\\dataset\\LiTS17\\2d\\'
filenames = os.listdir(path + "segmentation")
num = 0
for filename in filenames:
num = save_fig(path, savepath, num, filename)
```
阅读全文