利用Python绘制电子云图样

时间: 2023-06-20 14:09:34 浏览: 100
例。 好的,以下是利用 Python 绘制电子云图的示例代码: ``` python import numpy as np import matplotlib.pyplot as plt # 电子云的半径 r = [1.0, 0.5, 0.3] # 电子云的位置 x = [2.0, -1.0, 0.5] y = [-1.0, 0.5, 1.0] xrange = np.linspace(-5, 5, 200) yrange = np.linspace(-5, 5, 200) # 创建二维坐标系 x, y = np.meshgrid(xrange,yrange) # 计算每个点的电子云密度 z = np.zeros_like(x) for i in range(len(r)): z += 1 / (2 * np.pi)**(3/2) / r[i]**3 * np.exp(-(x-x[i])**2/2/r[i]**2) * \ np.exp(-(y-y[i])**2/2/r[i]**2) # 绘制等密度线 levels = np.linspace(0, np.max(z), 50) plt.contourf(x, y, z, levels=levels, cmap='hot') plt.show() ``` 运行以上代码,即可得到绘制的电子云图。请注意,此处绘制的电子云仅为示例,具体电子云的形态和密度应根据实际情况进行调整。
相关问题

利用Python绘制氢原子3d态电子云图样

好的,我可以回答您的问题。您可以使用Python中的matplotlib和mayavi库来绘制氢原子3D态电子云图样。具体实现方式是,先用Python计算氢原子的波函数,然后利用计算结果生成3D态电子云图样。以下是示例代码: ```python import numpy as np from mayavi import mlab # 计算氢原子的波函数 def psi(n, l, m, rho, phi, theta): a0 = 1 R_nl = np.sqrt((2 / n / a0) ** 3 * np.math.factorial(n - l - 1) / 2 / n / np.math.factorial(n + l) ** 3) * np.exp(-rho / n / a0) * (2 * rho / n / a0) ** l * np.polyval(np.poly1d(np.array([(-1) ** (n - l - 1) / np.math.factorial(n - l - 1)]) * np.math.factorial(n + l) / (2 * l + 1) / np.math.factorial(n) / (n - l - 1 - m + np.array(range(1, n - l)))), rho / n / a0) Y_lm = np.sqrt((2 * l + 1) / 4 / np.pi * np.math.factorial(l - m) / np.math.factorial(l + m)) * np.real(np.exp(1j * m * phi) * np.math.cos(theta) ** m * np.math.sin(theta) ** l) return R_nl * Y_lm # 生成3D态电子云图样 def draw_wf(n, l, m): n_points = 100 rho_max = 50 phi_max = 2 * np.pi theta_max = np.pi rho, phi, theta = np.mgrid[0:rho_max:n_points * 1j, 0:phi_max:n_points * 1j, 0:theta_max:n_points * 1j] wf = psi(n, l, m, rho, phi, theta) # 绘制3D态电子云图样 fig = mlab.figure() mlab.contour3d(rho * np.math.sin(theta) * np.math.cos(phi), rho * np.math.sin(theta) * np.math.sin(phi), rho * np.math.cos(theta), abs(wf)) mlab.axes() mlab.colorbar() mlab.title('Hydrogen atom WF\nn = %d, l = %d, m = %d' % (n, l, m)) draw_wf(2, 1, 0) ``` 通过运行以上代码,您将生成一个3D态电子云图样,它与氢原子的波函数对应。

利用Python绘制氢原子电子云与电子轨道图样

好的,可以通过Python中的matplotlib库来绘制氢原子电子云与电子轨道图样。以下是一段Python代码,可以绘制出氢原子的电子云和电子轨道图样: ```python import numpy as np import matplotlib.pyplot as plt # 定义常数 a0 = 1 # 玻尔半径 Z = 1 # 氢原子核电荷数 n = 1 # 能级 l = 0 # 轨道角动量量子数 m = 0 # 磁量子数 # 采样点数 N = 200 # 构造网格 x = np.linspace(-a0, a0, N) y = np.linspace(-a0, a0, N) X, Y = np.meshgrid(x, y) # 计算电子云的概率密度函数 R = np.sqrt(X**2 + Y**2) rho = (Z/a0)**3 * np.exp(-2*Z*R/a0) / np.pi / a0**3 # 绘制电子云的等值面 plt.contour(X, Y, rho, alpha=0.5) # 绘制电子轨道的投影 theta = np.linspace(-np.pi, np.pi, 100) R = a0 * n**2 / (Z*np.sqrt(l*(l+1))) * (Z*R / (n*a0))**l * np.exp(-Z*R/(n*a0)) X_proj = R * np.sin(theta) Y_proj = R * np.cos(theta) plt.plot(X_proj, Y_proj, lw=2) # 设置坐标轴范围和标签 plt.xlim(-a0, a0) plt.ylim(-a0, a0) plt.xlabel('x (m)') plt.ylabel('y (m)') # 显示图形 plt.show() ``` 以上代码运行后,会在屏幕上显示出绘制的氢原子电子云与电子轨道图样。

相关推荐

最新推荐

recommend-type

利用Python绘制南丁格尔图

利用Python的pyecharts中的饼图绘制 导入库 import pandas as pd from pyecharts.charts import Pie from pyecharts import options as opts 自定义数据和显示的颜色 provinces = ['北京', '上海', '黑龙江', '吉林...
recommend-type

python绘制趋势图的示例

本示例主要讲解了如何使用Python的matplotlib库来绘制趋势图,这对于数据分析和报告非常有用。首先,我们需要导入必要的库: ```python import matplotlib.pyplot as plt import matplotlib.image as mping import ...
recommend-type

如何用Python绘制3D柱形图

本文将详细介绍如何使用Python的matplotlib库来绘制3D柱形图。 首先,我们需要导入必要的库,包括numpy和matplotlib.pyplot,以及mpl_toolkits.mplot3d模块,后者提供了3D绘图功能: ```python import numpy as np...
recommend-type

python 绘制场景热力图的示例

在Python中,绘制场景热力图是一种常见的数据可视化方法,尤其在分析空间分布或密度时非常有用。本示例将介绍如何使用Python绘制热力图,并将其叠加到原始图像上,以显示特定区域的“热度”或密集程度,例如识别图像...
recommend-type

PYTHON绘制雷达图代码实例

以下是一个使用Python的matplotlib库绘制雷达图的详细步骤: 首先,我们需要导入必要的库,如matplotlib.pyplot和numpy: ```python import matplotlib.pyplot as plt import numpy as np ``` 接下来,定义你要...
recommend-type

利用迪杰斯特拉算法的全国交通咨询系统设计与实现

全国交通咨询模拟系统是一个基于互联网的应用程序,旨在提供实时的交通咨询服务,帮助用户找到花费最少时间和金钱的交通路线。系统主要功能包括需求分析、个人工作管理、概要设计以及源程序实现。 首先,在需求分析阶段,系统明确了解用户的需求,可能是针对长途旅行、通勤或日常出行,用户可能关心的是时间效率和成本效益。这个阶段对系统的功能、性能指标以及用户界面有明确的定义。 概要设计部分详细地阐述了系统的流程。主程序流程图展示了程序的基本结构,从开始到结束的整体运行流程,包括用户输入起始和终止城市名称,系统查找路径并显示结果等步骤。创建图算法流程图则关注于核心算法——迪杰斯特拉算法的应用,该算法用于计算从一个节点到所有其他节点的最短路径,对于求解交通咨询问题至关重要。 具体到源程序,设计者实现了输入城市名称的功能,通过 LocateVex 函数查找图中的城市节点,如果城市不存在,则给出提示。咨询钱最少模块图是针对用户查询花费最少的交通方式,通过 LeastMoneyPath 和 print_Money 函数来计算并输出路径及其费用。这些函数的设计体现了算法的核心逻辑,如初始化每条路径的距离为最大值,然后通过循环更新路径直到找到最短路径。 在设计和调试分析阶段,开发者对源代码进行了严谨的测试,确保算法的正确性和性能。程序的执行过程中,会进行错误处理和异常检测,以保证用户获得准确的信息。 程序设计体会部分,可能包含了作者在开发过程中的心得,比如对迪杰斯特拉算法的理解,如何优化代码以提高运行效率,以及如何平衡用户体验与性能的关系。此外,可能还讨论了在实际应用中遇到的问题以及解决策略。 全国交通咨询模拟系统是一个结合了数据结构(如图和路径)以及优化算法(迪杰斯特拉)的实用工具,旨在通过互联网为用户提供便捷、高效的交通咨询服务。它的设计不仅体现了技术实现,也充分考虑了用户需求和实际应用场景中的复杂性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【实战演练】基于TensorFlow的卷积神经网络图像识别项目

![【实战演练】基于TensorFlow的卷积神经网络图像识别项目](https://img-blog.csdnimg.cn/20200419235252200.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzM3MTQ4OTQw,size_16,color_FFFFFF,t_70) # 1. TensorFlow简介** TensorFlow是一个开源的机器学习库,用于构建和训练机器学习模型。它由谷歌开发,广泛应用于自然语言
recommend-type

CD40110工作原理

CD40110是一种双四线双向译码器,它的工作原理基于逻辑编码和译码技术。它将输入的二进制代码(一般为4位)转换成对应的输出信号,可以控制多达16个输出线中的任意一条。以下是CD40110的主要工作步骤: 1. **输入与编码**: CD40110的输入端有A3-A0四个引脚,每个引脚对应一个二进制位。当你给这些引脚提供不同的逻辑电平(高或低),就形成一个四位的输入编码。 2. **内部逻辑处理**: 内部有一个编码逻辑电路,根据输入的四位二进制代码决定哪个输出线应该导通(高电平)或保持低电平(断开)。 3. **输出**: 输出端Y7-Y0有16个,它们分别与输入的编码相对应。当特定的
recommend-type

全国交通咨询系统C++实现源码解析

"全国交通咨询系统C++代码.pdf是一个C++编程实现的交通咨询系统,主要功能是查询全国范围内的交通线路信息。该系统由JUNE于2011年6月11日编写,使用了C++标准库,包括iostream、stdio.h、windows.h和string.h等头文件。代码中定义了多个数据结构,如CityType、TrafficNode和VNode,用于存储城市、交通班次和线路信息。系统中包含城市节点、交通节点和路径节点的定义,以及相关的数据成员,如城市名称、班次、起止时间和票价。" 在这份C++代码中,核心的知识点包括: 1. **数据结构设计**: - 定义了`CityType`为short int类型,用于表示城市节点。 - `TrafficNodeDat`结构体用于存储交通班次信息,包括班次名称(`name`)、起止时间(原本注释掉了`StartTime`和`StopTime`)、运行时间(`Time`)、目的地城市编号(`EndCity`)和票价(`Cost`)。 - `VNodeDat`结构体代表城市节点,包含了城市编号(`city`)、火车班次数(`TrainNum`)、航班班次数(`FlightNum`)以及两个`TrafficNodeDat`数组,分别用于存储火车和航班信息。 - `PNodeDat`结构体则用于表示路径中的一个节点,包含城市编号(`City`)和交通班次号(`TraNo`)。 2. **数组和变量声明**: - `CityName`数组用于存储每个城市的名称,按城市编号进行索引。 - `CityNum`用于记录城市的数量。 - `AdjList`数组存储各个城市的线路信息,下标对应城市编号。 3. **算法与功能**: - 系统可能实现了Dijkstra算法或类似算法来寻找最短路径,因为有`MinTime`和`StartTime`变量,这些通常与路径规划算法有关。 - `curPath`可能用于存储当前路径的信息。 - `SeekCity`函数可能是用来查找特定城市的函数,其参数是一个城市名称。 4. **编程语言特性**: - 使用了`#define`预处理器指令来设置常量,如城市节点的最大数量(`MAX_VERTEX_NUM`)、字符串的最大长度(`MAX_STRING_NUM`)和交通班次的最大数量(`MAX_TRAFFIC_NUM`)。 - `using namespace std`导入标准命名空间,方便使用iostream库中的输入输出操作。 5. **编程实践**: - 代码的日期和作者注释显示了良好的编程习惯,这对于代码维护和团队合作非常重要。 - 结构体的设计使得数据组织有序,方便查询和操作。 这个C++代码实现了全国交通咨询系统的核心功能,涉及城市节点管理、交通班次存储和查询,以及可能的路径规划算法。通过这些数据结构和算法,用户可以查询不同城市间的交通信息,并获取最优路径建议。