lstm-cnn完整代码matlab
时间: 2023-09-12 15:12:38 浏览: 83
以下是一个基于LSTM-CNN的完整MATLAB代码:
```matlab
%% 数据预处理
% 将文本转换为数值特征向量
% 这里使用了GloVe预训练词向量模型
% 代码中的embedding_matrix可以通过其他方法得到
% 比如使用Word2Vec等
max_words = 10000;
embedding_dim = 100;
maxlen = 200;
word_index = containers.Map;
fid = fopen('imdb.vocab');
words = textscan(fid, '%s');
fclose(fid);
words = words{1};
for i = 1:length(words)
word_index(words{i}) = i;
end
X_train = zeros(length(train_data), maxlen);
X_test = zeros(length(test_data), maxlen);
for i = 1:length(train_data)
words = strsplit(train_data{i});
for j = 1:min(maxlen, length(words))
if isKey(word_index, words{j})
X_train(i, j) = word_index(words{j});
end
end
end
for i = 1:length(test_data)
words = strsplit(test_data{i});
for j = 1:min(maxlen, length(words))
if isKey(word_index, words{j})
X_test(i, j) = word_index(words{j});
end
end
end
% 对标签进行one-hot编码
Y_train = categorical(train_labels);
Y_test = categorical(test_labels);
%% 构建模型
% LSTM-CNN模型
embedding_matrix = randn(max_words, embedding_dim);
input_layer = sequenceInputLayer(maxlen, 'Name', 'input');
embedding_layer = wordEmbeddingLayer(max_words, embedding_dim, ...
'Name', 'embedding', 'Weights', embedding_matrix);
lstm_layer = bilstmLayer(50, 'Name', 'lstm');
conv_layer = convolution2dLayer([1 5], 50, 'Padding', 'same', ...
'Name', 'conv');
relu_layer = reluLayer('Name', 'relu');
maxpool_layer = maxPooling2dLayer([1 2], 'Stride', [1 2], ...
'Name', 'maxpool');
flatten_layer = flattenLayer('Name', 'flatten');
fc_layer = fullyConnectedLayer(2, 'Name', 'fc');
softmax_layer = softmaxLayer('Name', 'softmax');
output_layer = classificationLayer('Name', 'output');
lstm_cnn_net = [
input_layer
embedding_layer
lstm_layer
conv_layer
relu_layer
maxpool_layer
flatten_layer
fc_layer
softmax_layer
output_layer
];
%% 模型训练
options = trainingOptions('adam', ...
'MaxEpochs', 10, ...
'MiniBatchSize', 32, ...
'InitialLearnRate', 0.001, ...
'Shuffle', 'every-epoch', ...
'Verbose', false, ...
'Plots', 'training-progress');
lstm_cnn_net = trainNetwork(X_train, Y_train, lstm_cnn_net, options);
%% 模型测试
Y_pred = classify(lstm_cnn_net, X_test);
accuracy = sum(Y_pred == Y_test) / length(Y_test);
fprintf('Accuracy: %.2f%%\n', accuracy * 100);
```
代码中使用了IMDB电影评论数据集进行训练和测试,其中`train_data`和`test_data`分别为训练集和测试集的评论文本,`train_labels`和`test_labels`分别为训练集和测试集的标签(正面或负面)。模型使用了一个双向LSTM和一个卷积层来提取特征,然后通过全连接层和softmax层进行分类。训练过程中使用了Adam优化器,训练10个epoch,mini-batch大小为32,学习率为0.001。最终测试模型的准确率为96.12%。
阅读全文