type.measure="auc"
时间: 2023-09-25 11:07:47 浏览: 98
This is a parameter setting in machine learning algorithms, particularly in binary classification models. It specifies the type of performance measure to be used for evaluating the model's accuracy. In this case, "auc" stands for area under the receiver operating characteristic curve, which is a common measure of classification accuracy. The AUC score ranges from 0 to 1, with a higher score indicating better predictive performance of the model.
相关问题
library(ROCR) # 训练模型 model <- glm(target ~ predictor1 + predictor2, data=train_data, family=binomial) # 预测测试数据 prob <- predict(model, newdata=test_data, type="response") # 计算ROC曲线 pred <- prediction(prob, test_data$target) perf <- performance(pred, "tpr", "fpr") # 绘制ROC曲线 plot(perf)在这段代码中如何标注AUC
在这段代码中,你可以添加以下代码来标注AUC值:
```
auc <- performance(pred, measure = "auc")
auc_val <- round(auc@y.values[[1]], 3)
legend("bottomright", paste("AUC =", auc_val), bty = "n")
```
这样就可以在ROC曲线的右下角添加一个标注,显示AUC的值。
R语言实现根据匹配好的乳腺癌数据BCdata.csv,从给定的569个数据样本中随机抽取400个样本 作为训练集,其余样本作为测试集,建立基于AdaBoost的乳腺癌预测模型,计算预测准确率、感敏度和特异度,并绘制ROC曲线
好的,以下是R语言实现根据匹配好的乳腺癌数据BCdata.csv,从给定的569个数据样本中随机抽取400个样本 作为训练集,其余样本作为测试集,建立基于AdaBoost的乳腺癌预测模型,计算预测准确率、感敏度和特异度,并绘制ROC曲线的代码:
```R
library(adabag)
library(ROCR)
# 读取数据
data <- read.csv("BCdata.csv")
# 将标签转换为0和1
data$diagnosis <- ifelse(data$diagnosis == "M", 1, 0)
# 随机抽取训练集和测试集
set.seed(0)
train_index <- sample(1:nrow(data), 400)
train_data <- data[train_index, -1]
train_label <- data[train_index, 1]
test_data <- data[-train_index, -1]
test_label <- data[-train_index, 1]
# 建立AdaBoost模型
ada <- boosting(diagnosis ~ ., data = data.frame(cbind(train_label, train_data)),
boos = TRUE, mfinal = 100, control = rpart.control(maxdepth = 1))
# 预测测试集
pred <- predict.boosting(ada, newdata = test_data)
# 计算准确率
accuracy <- sum(pred$class == test_label) / length(test_label)
# 计算混淆矩阵
cm <- table(test_label, pred$class)
# 计算感敏度和特异度
sensitivity <- cm[2, 2] / (cm[2, 2] + cm[2, 1])
specificity <- cm[1, 1] / (cm[1, 1] + cm[1, 2])
# 计算ROC曲线和AUC
pred_prob <- predict.boosting(ada, newdata = test_data, type = "prob")
pred_roc <- prediction(pred_prob[,2], test_label)
auc <- performance(pred_roc, "auc")@y.values[[1]]
# 绘制ROC曲线
pred_perf <- performance(pred_roc, measure = "tpr", x.measure = "fpr")
plot(pred_perf, colorize = TRUE, print.cutoffs.at = seq(0, 1, 0.1), text.adj = c(-0.2, 1.7))
abline(0, 1, lty = 2, col = "gray")
title(main = "ROC Curve", xlab = "False Positive Rate", ylab = "True Positive Rate")
legend("bottomright", legend = paste("AUC =", round(auc, 2)), border = NA, fill = NA, bty = "n")
```
这段代码首先使用adabag库中的boosting函数建立AdaBoost模型,然后使用predict.boosting函数对测试集进行预测。接着,计算准确率、混淆矩阵、感敏度、特异度和AUC,并使用ROCR库绘制ROC曲线。
阅读全文