def sgd(w, dw, config=None): if config is None: config = {} config.setdefault('learning_rate', 1e-2) w -= config['learning_rate'] * dw return w, config "随机梯度下降(Stochastic Gradient Descent,SGD)的更新方法。" def sgd_momentum(w, dw, config=None): if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', np.zeros_like(w)) next_w = None v = config['momentum'] * v - config['learning_rate'] * dw next_w = w + v config['velocity'] = v return next_w, config

时间: 2024-04-27 16:24:36 浏览: 5
这两段代码分别实现了随机梯度下降(SGD)和带有动量的随机梯度下降(SGD with Momentum)的更新方法。 SGD的更新公式:$w = w - \alpha * \frac{\partial L}{\partial w}$,其中$\alpha$为学习率,$L$为损失函数,$w$为待更新的参数。 带有动量的SGD的更新公式:$v = \beta * v - \alpha * \frac{\partial L}{\partial w}$,$w = w + v$,其中$\beta$为动量因子,$v$为动量,其初始值为0。 两段代码的输入参数相同,包括待更新的参数$w$和对应的梯度$dw$,以及超参数的配置信息$config$,包括学习率$\alpha$和动量因子$\beta$等。在两段代码中,如果$config$为空,则初始化为一个空字典。然后,如果字典中没有设置学习率或动量因子,则将它们设置为默认值。接下来,对于SGD,根据SGD的公式更新参数$w$;对于带有动量的SGD,根据动量的公式更新动量$v$,并根据动量和参数的公式更新参数$w$。最后,将更新后的参数和超参数配置信息返回。
相关问题

def sgd_momentum(w, dw, config=None): if config is None: config = {} config.setdefault('learning_rate', 1e-2) config.setdefault('momentum', 0.9) v = config.get('velocity', np.zeros_like(w)) next_w = None v = config['momentum'] * v - config['learning_rate'] * dw next_w = w + v config['velocity'] = v return next_w, config

这段代码实现了带有动量(momentum)的随机梯度下降(Stochastic Gradient Descent,SGD)的更新方法。其中,w表示待更新的参数,dw表示对应参数的梯度,config是一个包含超参数的字典,包括学习率和动量等。函数返回更新后的参数和更新后的超参数配置。具体实现是,如果config参数为空,则初始化为一个空字典。然后,如果字典中没有设置学习率和动量,则将它们设置为默认值1e-2和0.9。接着,初始化动量v为0或上一次更新时保存的动量。然后,根据带有动量的随机梯度下降的公式,更新动量v:v = momentum * v - learning_rate * dw。最后,根据更新后的动量和参数,计算下一次的参数值:next_w = w + v。更新后的参数和超参数配置被打包成一个元组返回。

优化代码 def GetAlgType(self, AlgType): if AlgType == "SGD_SM1": AlgType = self.AlgType.SGD_SM1 elif AlgType == "SGD_SM4": AlgType = self.AlgType.SGD_SM4 elif AlgType == "SGD_DES": AlgType = self.AlgType.SGD_DES elif AlgType == "SGD_2DES": AlgType = self.AlgType.SGD_2DES elif AlgType == "SGD_3DES": AlgType = self.AlgType.SGD_SM4 elif AlgType == "SGD_AES": AlgType = self.AlgType.SGD_AES elif AlgType == "SGD_AES192": AlgType = self.AlgType.SGD_AES192 elif AlgType == "SGD_AES256": AlgType = self.AlgType.SGD_AES256 return AlgType

可以优化代码,将多个if-elif语句改为使用字典来映射AlgType值。这样可以提高代码的可读性和性能。修改后的代码如下: def GetAlgType(self, AlgType): alg_mapping = { "SGD_SM1": self.AlgType.SGD_SM1, "SGD_SM4": self.AlgType.SGD_SM4, "SGD_DES": self.AlgType.SGD_DES, "SGD_2DES": self.AlgType.SGD_2DES, "SGD_3DES": self.AlgType.SGD_SM4, "SGD_AES": self.AlgType.SGD_AES, "SGD_AES192": self.AlgType.SGD_AES192, "SGD_AES256": self.AlgType.SGD_AES256 } return alg_mapping.get(AlgType, AlgType) 这样,通过查找字典中的映射关系,可以直接返回对应的AlgType值,如果找不到映射关系则返回原始的AlgType值。

相关推荐

下面的这段python代码,哪里有错误,修改一下:import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable from sklearn.preprocessing import MinMaxScaler training_set = pd.read_csv('CX2-36_1971.csv') training_set = training_set.iloc[:, 1:2].values def sliding_windows(data, seq_length): x = [] y = [] for i in range(len(data) - seq_length): _x = data[i:(i + seq_length)] _y = data[i + seq_length] x.append(_x) y.append(_y) return np.array(x), np.array(y) sc = MinMaxScaler() training_data = sc.fit_transform(training_set) seq_length = 1 x, y = sliding_windows(training_data, seq_length) train_size = int(len(y) * 0.8) test_size = len(y) - train_size dataX = Variable(torch.Tensor(np.array(x))) dataY = Variable(torch.Tensor(np.array(y))) trainX = Variable(torch.Tensor(np.array(x[1:train_size]))) trainY = Variable(torch.Tensor(np.array(y[1:train_size]))) testX = Variable(torch.Tensor(np.array(x[train_size:len(x)]))) testY = Variable(torch.Tensor(np.array(y[train_size:len(y)]))) class LSTM(nn.Module): def __init__(self, num_classes, input_size, hidden_size, num_layers): super(LSTM, self).__init__() self.num_classes = num_classes self.num_layers = num_layers self.input_size = input_size self.hidden_size = hidden_size self.seq_length = seq_length self.lstm = nn.LSTM(input_size=input_size, hidden_size=hidden_size, num_layers=num_layers, batch_first=True) self.fc = nn.Linear(hidden_size, num_classes) def forward(self, x): h_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) c_0 = Variable(torch.zeros( self.num_layers, x.size(0), self.hidden_size)) # Propagate input through LSTM ula, (h_out, _) = self.lstm(x, (h_0, c_0)) h_out = h_out.view(-1, self.hidden_size) out = self.fc(h_out) return out num_epochs = 2000 learning_rate = 0.001 input_size = 1 hidden_size = 2 num_layers = 1 num_classes = 1 lstm = LSTM(num_classes, input_size, hidden_size, num_layers) criterion = torch.nn.MSELoss() # mean-squared error for regression optimizer = torch.optim.Adam(lstm.parameters(), lr=learning_rate) # optimizer = torch.optim.SGD(lstm.parameters(), lr=learning_rate) runn = 10 Y_predict = np.zeros((runn, len(dataY))) # Train the model for i in range(runn): print('Run: ' + str(i + 1)) for epoch in range(num_epochs): outputs = lstm(trainX) optimizer.zero_grad() # obtain the loss function loss = criterion(outputs, trainY) loss.backward() optimizer.step() if epoch % 100 == 0: print("Epoch: %d, loss: %1.5f" % (epoch, loss.item())) lstm.eval() train_predict = lstm(dataX) data_predict = train_predict.data.numpy() dataY_plot = dataY.data.numpy() data_predict = sc.inverse_transform(data_predict) dataY_plot = sc.inverse_transform(dataY_plot) Y_predict[i,:] = np.transpose(np.array(data_predict)) Y_Predict = np.mean(np.array(Y_predict)) Y_Predict_T = np.transpose(np.array(Y_Predict))

这段代码中加一个test loss功能 class LSTM(nn.Module): def __init__(self, input_size, hidden_size, num_layers, output_size, batch_size, device): super().__init__() self.device = device self.input_size = input_size self.hidden_size = hidden_size self.num_layers = num_layers self.output_size = output_size self.num_directions = 1 # 单向LSTM self.batch_size = batch_size self.lstm = nn.LSTM(self.input_size, self.hidden_size, self.num_layers, batch_first=True) self.linear = nn.Linear(65536, self.output_size) def forward(self, input_seq): h_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) c_0 = torch.randn(self.num_directions * self.num_layers, self.batch_size, self.hidden_size).to(self.device) output, _ = self.lstm(input_seq, (h_0, c_0)) pred = self.linear(output.contiguous().view(self.batch_size, -1)) return pred if __name__ == '__main__': # 加载已保存的模型参数 saved_model_path = '/content/drive/MyDrive/危急值/model/dangerous.pth' device = 'cuda:0' lstm_model = LSTM(input_size=1, hidden_size=64, num_layers=1, output_size=3, batch_size=256, device='cuda:0').to(device) state_dict = torch.load(saved_model_path) lstm_model.load_state_dict(state_dict) dataset = ECGDataset(X_train_df.to_numpy()) dataloader = DataLoader(dataset, batch_size=256, shuffle=True, num_workers=0, drop_last=True) loss_fn = nn.CrossEntropyLoss() optimizer = optim.SGD(lstm_model.parameters(), lr=1e-4) for epoch in range(200000): print(f'epoch:{epoch}') lstm_model.train() epoch_bar = tqdm(dataloader) for x, y in epoch_bar: optimizer.zero_grad() x_out = lstm_model(x.to(device).type(torch.cuda.FloatTensor)) loss = loss_fn(x_out, y.long().to(device)) loss.backward() epoch_bar.set_description(f'loss:{loss.item():.4f}') optimizer.step() if epoch % 100 == 0 or epoch == epoch - 1: torch.save(lstm_model.state_dict(), "/content/drive/MyDrive/危急值/model/dangerous.pth") print("权重成功保存一次")

class NeuralNetwork: def init(self, input_dim, hidden_dim, output_dim): self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self.weights1 = np.random.randn(input_dim, hidden_dim) self.bias1 = np.zeros((1, hidden_dim)) self.weights2 = np.random.randn(hidden_dim, output_dim) self.bias2 = np.zeros((1, output_dim)) def relu(self, x): return np.maximum(0, x) def relu_derivative(self, x): return np.where(x >= 0, 1, 0) def forward(self, x): self.z1 = np.dot(x, self.weights1) + self.bias1 self.a1 = self.relu(self.z1) self.z2 = np.dot(self.a1, self.weights2) + self.bias2 self.y_hat = self.z2 return self.y_hat def backward(self, x, y, learning_rate): error = self.y_hat - y delta2 = error delta1 = np.dot(delta2, self.weights2.T) * self.relu_derivative(self.a1) grad_weights2 = np.dot(self.a1.T, delta2) grad_bias2 = np.sum(delta2, axis=0, keepdims=True) grad_weights1 = np.dot(x.T, delta1) grad_bias1 = np.sum(delta1, axis=0) self.weights2 -= learning_rate * grad_weights2 self.bias2 -= learning_rate * grad_bias2 self.weights1 -= learning_rate * grad_weights1 def mse_loss(self, y, y_hat): return np.mean((y - y_hat)**2) def sgd_optimizer(self, x, y, learning_rate): y_hat = self.forward(x) loss = self.mse_loss(y, y_hat) self.backward(x, y, learning_rate) return loss def train(self, x, y, learning_rate, num_epochs): for i in range(num_epochs): y_hat = self.forward(x) loss = np.mean(np.square(y_hat - y)) loss_history.append(loss) self.backward(X, y, y_hat, learning_rate) if i % 100 == 0: print('Epoch', i, '- Loss:', loss) return loss_history input_dim=13 hidden_dim=25 output=1 nn=NeuralNetwork(input_dim, hidden_dim, output_dim) learning_rate=0.05 num_epochs=2000 loss_history=nn.train(x, y, learning_rate, num_epochs)分析代码

代码time_start = time.time() results = list() iterations = 2001 lr = 1e-2 model = func_critic_model(input_shape=(None, train_img.shape[1]), act_func='relu') loss_func = tf.keras.losses.MeanSquaredError() alg = "gd" # alg = "gd" for kk in range(iterations): with tf.GradientTape() as tape: predict_label = model(train_img) loss_val = loss_func(predict_label, train_lbl) grads = tape.gradient(loss_val, model.trainable_variables) overall_grad = tf.concat([tf.reshape(grad, -1) for grad in grads], 0) overall_model = tf.concat([tf.reshape(weight, -1) for weight in model.weights], 0) overall_grad = overall_grad + 0.001 * overall_model ## adding a regularization term results.append(loss_val.numpy()) if alg == 'gd': overall_model -= lr * overall_grad ### gradient descent elif alg == 'gdn': ## gradient descent with nestrov's momentum overall_vv_new = overall_model - lr * overall_grad overall_model = (1 + gamma) * oerall_vv_new - gamma * overall_vv overall_vv = overall_new pass model_start = 0 for idx, weight in enumerate(model.weights): model_end = model_start + tf.size(weight) weight.assign(tf.reshape()) for grad, ww in zip(grads, model.weights): ww.assign(ww - lr * grad) if kk % 100 == 0: print(f"Iter: {kk}, loss: {loss_val:.3f}, Duration: {time.time() - time_start:.3f} sec...") input_shape = train_img.shape[1] - 1 model = tf.keras.Sequential([ tf.keras.layers.Input(shape=(input_shape,)), tf.keras.layers.Dense(30, activation="relu"), tf.keras.layers.Dense(20, activation="relu"), tf.keras.layers.Dense(1) ]) n_epochs = 20 batch_size = 100 learning_rate = 0.01 momentum = 0.9 sgd_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum) model.compile(loss="mean_squared_error", optimizer=sgd_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl)) nag_optimizer = tf.keras.optimizers.SGD(learning_rate=learning_rate, momentum=momentum, nesterov=True) model.compile(loss="mean_squared_error", optimizer=nag_optimizer) history = model.fit(train_img, train_lbl, epochs=n_epochs, batch_size=batch_size, validation_data=(test_img, test_lbl))运行后报错TypeError: Missing required positional argument,如何改正

最新推荐

recommend-type

华为OD机试D卷 - 在字符串中找出连续最长的数字串(含“+-”号) - 免费看解析和代码.html

私信博主免费获取真题解析以及代码
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

spring添加xml配置文件

1. 创建一个新的Spring配置文件,例如"applicationContext.xml"。 2. 在文件头部添加XML命名空间和schema定义,如下所示: ``` <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.springframework.org/schema/beans
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

输出这段Python代码输出所有3位整数中,个位是5且是3的倍数的整数

``` for i in range(100,1000): if i%10 == 5 and i%3 == 0: print(i) ``` 输出结果: ``` 105 135 165 195 225 255 285 315 345 375 405 435 465 495 525 555 585 615 645 675 705 735 765 795 825 855 885 915 945 975 ```
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。