波士顿房价预测任务 波士顿房价预测是一个经典的机器学习任务,类似于程序员世界的“Hello World”。和大家对房价的普遍认知相同,波士顿地区的房价是由诸多因素影响的。该数据集统计了13种可能影响房价的因素和该类型房屋的均价,期望构建一个基于13个因素进行房价预测的模型,如 图1 所示。 图1:波士顿房价影响因素示意图 对于预测问题,可以根据预测输出的类型是连续的实数值,还是离散的标签,区分为回归任务和分类任务。因为房价是一个连续值,所以房价预测显然是一个回归任务。下面我们尝试用最简单的线性回归模型解决这个问题,并用神经网络来实现这个模型。 线性回归模型 假设房价和各影响因素之间能够用线性关系来描述: y=∑j=1Mxjwj+by = {\sum_{j=1}^Mx_j w_j} + b y= j=1 ∑ M ​ x j ​ w j ​ +b 模型的求解即是通过数据拟合出每个wjw_jw j ​ 和bbb。其中,wjw_jw j ​ 和bbb分别表示该线性模型的权重和偏置。一维情况下,wjw_jw j ​ 和 bbb 是直线的斜率和截距。 线性回归模型使用均方误差作为损失函数(Loss),用以衡量预测房价和真实房价的差异,公式如下: MSE=1n∑i=1n(Yi^−Yi)2MSE = \frac{1}{n} \sum_{i=1}^n(\hat{Y_i} - {Y_i})^{2} MSE= n 1 ​ i=1 ∑ n ​ ( Y i ​ ^ ​ −Y i ​ ) 2

时间: 2023-06-25 08:02:01 浏览: 144
其中,Yi^是模型预测的房价,Yi是真实的房价,n是样本数量。 我们可以使用梯度下降算法来最小化均方误差,以求得最优的权重和偏置。梯度下降算法的基本思想是,通过不断地调整权重和偏置,使损失函数最小化。 具体地,我们先随机初始化权重和偏置,然后计算出模型对于每个样本的预测值,再计算出损失函数的梯度,最后根据梯度的方向更新权重和偏置。重复这个过程,直到损失函数收敛。 下面是线性回归模型的Python实现代码: ```python import numpy as np class LinearRegression: def __init__(self, learning_rate=0.01, num_iterations=1000): self.learning_rate = learning_rate # 学习率 self.num_iterations = num_iterations # 迭代次数 self.w = None # 权重 self.b = None # 偏置 def fit(self, X, y): n_samples, n_features = X.shape # 初始化权重和偏置 self.w = np.zeros(n_features) self.b = 0 # 梯度下降 for i in range(self.num_iterations): y_pred = np.dot(X, self.w) + self.b dw = (1/n_samples) * np.dot(X.T, (y_pred - y)) db = (1/n_samples) * np.sum(y_pred - y) self.w -= self.learning_rate * dw self.b -= self.learning_rate * db def predict(self, X): y_pred = np.dot(X, self.w) + self.b return y_pred ``` 神经网络模型 除了线性回归模型,我们还可以用神经网络来解决波士顿房价预测问题。神经网络是一种由多个神经元组成的网络结构,其中每个神经元都是一个基本的计算单元。 在神经网络中,每个神经元接收到来自上一层神经元的输入,并通过一个激活函数来计算出输出。通过不断地调整权重和偏置,神经网络可以逐渐地学习到输入和输出之间的复杂映射关系。 对于波士顿房价预测问题,我们可以构建一个包含多个隐藏层的神经网络,其中每个隐藏层都包含多个神经元。下面是一个包含一个隐藏层的神经网络示意图: 图2:包含一个隐藏层的神经网络示意图 在神经网络中,我们需要定义一个损失函数来衡量模型预测值和真实值之间的差异。对于回归问题,通常使用均方误差作为损失函数,公式如下: MSE=1n∑i=1n(Yi^−Yi)2 其中,Yi^是模型预测的房价,Yi是真实的房价,n是样本数量。 我们可以使用反向传播算法来计算损失函数对于权重和偏置的梯度,并利用梯度下降算法来最小化损失函数。反向传播算法的基本思想是,通过链式法则计算出每个神经元的梯度,然后将梯度从输出层依次向前传播,直到计算出所有权重和偏置的梯度。最后根据梯度的方向更新权重和偏置。 下面是一个包含一个隐藏层的神经网络的Python实现代码: ```python import numpy as np class NeuralNetwork: def __init__(self, learning_rate=0.01, num_iterations=1000, hidden_layer_size=4): self.learning_rate = learning_rate # 学习率 self.num_iterations = num_iterations # 迭代次数 self.hidden_layer_size = hidden_layer_size # 隐藏层大小 self.W1 = None # 输入层到隐藏层的权重 self.b1 = None # 输入层到隐藏层的偏置 self.W2 = None # 隐藏层到输出层的权重 self.b2 = None # 隐藏层到输出层的偏置 def sigmoid(self, x): return 1 / (1 + np.exp(-x)) def fit(self, X, y): n_samples, n_features = X.shape # 初始化权重和偏置 self.W1 = np.random.randn(n_features, self.hidden_layer_size) self.b1 = np.zeros((1, self.hidden_layer_size)) self.W2 = np.random.randn(self.hidden_layer_size, 1) self.b2 = np.zeros((1, 1)) # 梯度下降 for i in range(self.num_iterations): # 前向传播 Z1 = np.dot(X, self.W1) + self.b1 A1 = self.sigmoid(Z1) Z2 = np.dot(A1, self.W2) + self.b2 y_pred = Z2 # 计算损失函数 cost = np.mean((y_pred - y)**2) # 反向传播 dZ2 = y_pred - y dW2 = np.dot(A1.T, dZ2) db2 = np.sum(dZ2, axis=0, keepdims=True) dA1 = np.dot(dZ2, self.W2.T) dZ1 = dA1 * (A1 * (1 - A1)) dW1 = np.dot(X.T, dZ1) db1 = np.sum(dZ1, axis=0) # 更新权重和偏置 self.W1 -= self.learning_rate * dW1 self.b1 -= self.learning_rate * db1 self.W2 -= self.learning_rate * dW2 self.b2 -= self.learning_rate * db2 def predict(self, X): Z1 = np.dot(X, self.W1) + self.b1 A1 = self.sigmoid(Z1) Z2 = np.dot(A1, self.W2) + self.b2 y_pred = Z2 return y_pred ``` 以上就是波士顿房价预测任务的线性回归模型和神经网络模型的介绍和Python实现。
阅读全文

相关推荐

最新推荐

recommend-type

Python 实现给女朋友的每日微信消息提醒!做一个贴心的程序员!!!

总的来说,这个项目展示了如何利用Python和相关库将互联网上的信息整合并个性化地传递给他人,同时也展示了一个程序员如何用技术表达关心和关爱。通过学习和实践这样的项目,开发者不仅可以提升自己的编程技能,还能...
recommend-type

程序人生--一个程序员对学弟学妹建议

请记住,避免走入误区,扎实学习基础,理解每一个技术背后的原理,不要盲从技术潮流,专注于动手实践和问题解决,这些才是你成为优秀程序员的关键。希望你们能够在这个充满挑战和机遇的行业中,找到属于自己的定位,...
recommend-type

黑马程序员Javase笔记

"黑马程序员Javase笔记"是一个自学者在学习黑马程序员提供的Java全套课程过程中整理的笔记,主要涵盖了Java Standard Edition (Javase) 的核心内容。下面将详细讨论其中的关键知识点。 首先,DOS命令是操作系统中的...
recommend-type

C语言实现3*3数组对角线之和示例

在本文中,我们将深入探讨如何使用C语言计算一个3x3二维数组的主对角线和副对角线元素之和。首先,我们要理解数组的基本概念。数组是C语言中的一种数据结构,它允许我们存储同一类型的数据集合。在本例中,我们使用...
recommend-type

一个程序员对编程的理解

一个程序员的成长不仅在于技术的磨炼,如编程能力、设计思想,更在于如何理解和满足客户需求。需求分析是整个软件开发过程中的关键环节,它直接影响项目的成功率。 1. **深入理解客户需求**: 场景1中,B店老板和B...
recommend-type

免安装JDK 1.8.0_241:即刻配置环境运行

资源摘要信息:"JDK 1.8.0_241 是Java开发工具包(Java Development Kit)的版本号,代表了Java软件开发环境的一个特定发布。它由甲骨文公司(Oracle Corporation)维护,是Java SE(Java Platform, Standard Edition)的一部分,主要用于开发和部署桌面、服务器以及嵌入式环境中的Java应用程序。本版本是JDK 1.8的更新版本,其中的241代表在该版本系列中的具体更新编号。此版本附带了Java源码,方便开发者查看和学习Java内部实现机制。由于是免安装版本,因此不需要复杂的安装过程,解压缩即可使用。用户配置好环境变量之后,即可以开始运行和开发Java程序。" 知识点详细说明: 1. JDK(Java Development Kit):JDK是进行Java编程和开发时所必需的一组工具集合。它包含了Java运行时环境(JRE)、编译器(javac)、调试器以及其他工具,如Java文档生成器(javadoc)和打包工具(jar)。JDK允许开发者创建Java应用程序、小程序以及可以部署在任何平台上的Java组件。 2. Java SE(Java Platform, Standard Edition):Java SE是Java平台的标准版本,它定义了Java编程语言的核心功能和库。Java SE是构建Java EE(企业版)和Java ME(微型版)的基础。Java SE提供了多种Java类库和API,包括集合框架、Java虚拟机(JVM)、网络编程、多线程、IO、数据库连接(JDBC)等。 3. 免安装版:通常情况下,JDK需要进行安装才能使用。但免安装版JDK仅需要解压缩到磁盘上的某个目录,不需要进行安装程序中的任何步骤。用户只需要配置好环境变量(主要是PATH、JAVA_HOME等),就可以直接使用命令行工具来运行Java程序或编译代码。 4. 源码:在软件开发领域,源码指的是程序的原始代码,它是由程序员编写的可读文本,通常是高级编程语言如Java、C++等的代码。本压缩包附带的源码允许开发者阅读和研究Java类库是如何实现的,有助于深入理解Java语言的内部工作原理。源码对于学习、调试和扩展Java平台是非常有价值的资源。 5. 环境变量配置:环境变量是操作系统中用于控制程序执行环境的参数。在JDK中,常见的环境变量包括JAVA_HOME和PATH。JAVA_HOME是JDK安装目录的路径,配置此变量可以让操作系统识别到JDK的位置。PATH变量则用于指定系统命令查找的路径,将JDK的bin目录添加到PATH后,就可以在命令行中的任何目录下执行JDK中的命令,如javac和java。 在实际开发中,了解并正确配置JDK对于Java开发者来说是一个基础且重要的环节。掌握如何安装和配置JDK,以及如何理解JDK中的源码和各种工具,对于进行Java编程和解决问题至关重要。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【提升效率与稳定性】:深入掌握单相整流器的控制策略

# 摘要 单相整流器作为电力电子技术的基础设备,广泛应用于电力系统和工业自动化领域。本文首先概述了单相整流器的基本概念,详细分析了其工作原理,包括电力电子器件的角色、数学模型以及控制策略。随后,针对控制技术进行了深入探讨,包括传统控制技术如PID控制和高级控制策略如模糊逻辑控制及自适应控制的应用。进一步地,本文提出了一系列提升单相整流器性能的方法,如效率提升策略、系统稳定性措施,以及性能评估与优化方案。最后,文章探讨了单相整流器在不同领域的应用案例,并对新兴技术与市场趋势进行了展望。 # 关键字 单相整流器;电力电子器件;数学模型;控制策略;性能提升;应用案例 参考资源链接:[单相PWM整
recommend-type

你看这是ashx映射的cs文件初始代码,你看这里边根本就没有写对action参数进行任何操作但你.ashx?action=submit这样去做他就能返回出数据这是为什么

在ASP.NET中,.ashx文件(也称为HTTP处理程序)用于处理HTTP请求并返回响应。即使在初始代码中没有对action参数进行任何操作,系统仍然可以通过默认的ProcessRequest方法处理请求并返回数据。 当你在URL中传递参数(如?action=submit)时,这些参数会被包含在请求的查询字符串中。虽然你的代码没有显式地处理这些参数,但默认的ProcessRequest方法会接收这些参数并执行一些默认操作。 以下是一个简单的.ashx文件示例: ```csharp <%@ WebHandler Language="C#" Class="MyHandler" %> us
recommend-type

机器学习预测葡萄酒评分:二值化品尝笔记的应用

资源摘要信息:"wine_reviewer:使用机器学习基于二值化的品尝笔记来预测葡萄酒评论分数" 在当今这个信息爆炸的时代,机器学习技术已经被广泛地应用于各个领域,其中包括食品和饮料行业的质量评估。在本案例中,将探讨一个名为wine_reviewer的项目,该项目的目标是利用机器学习模型,基于二值化的品尝笔记数据来预测葡萄酒评论的分数。这个项目不仅对于葡萄酒爱好者具有极大的吸引力,同时也为数据分析和机器学习的研究人员提供了实践案例。 首先,要理解的关键词是“机器学习”。机器学习是人工智能的一个分支,它让计算机系统能够通过经验自动地改进性能,而无需人类进行明确的编程。在葡萄酒评分预测的场景中,机器学习算法将从大量的葡萄酒品尝笔记数据中学习,发现笔记与葡萄酒最终评分之间的相关性,并利用这种相关性对新的品尝笔记进行评分预测。 接下来是“二值化”处理。在机器学习中,数据预处理是一个重要的步骤,它直接影响模型的性能。二值化是指将数值型数据转换为二进制形式(0和1)的过程,这通常用于简化模型的计算复杂度,或者是数据分类问题中的一种技术。在葡萄酒品尝笔记的上下文中,二值化可能涉及将每种口感、香气和外观等属性的存在与否标记为1(存在)或0(不存在)。这种方法有利于将文本数据转换为机器学习模型可以处理的格式。 葡萄酒评论分数是葡萄酒评估的量化指标,通常由品酒师根据酒的品质、口感、香气、外观等进行评分。在这个项目中,葡萄酒的品尝笔记将被用作特征,而品酒师给出的分数则是目标变量,模型的任务是找出两者之间的关系,并对新的品尝笔记进行分数预测。 在机器学习中,通常会使用多种算法来构建预测模型,如线性回归、决策树、随机森林、梯度提升机等。在wine_reviewer项目中,可能会尝试多种算法,并通过交叉验证等技术来评估模型的性能,最终选择最适合这个任务的模型。 对于这个项目来说,数据集的质量和特征工程将直接影响模型的准确性和可靠性。在准备数据时,可能需要进行数据清洗、缺失值处理、文本规范化、特征选择等步骤。数据集中的标签(目标变量)即为葡萄酒的评分,而特征则来自于品酒师的品尝笔记。 项目还提到了“kaggle”和“R”,这两个都是数据分析和机器学习领域中常见的元素。Kaggle是一个全球性的数据科学竞赛平台,提供各种机器学习挑战和数据集,吸引了来自全球的数据科学家和机器学习专家。通过参与Kaggle竞赛,可以提升个人技能,并有机会接触到最新的机器学习技术和数据处理方法。R是一种用于统计计算和图形的编程语言和软件环境,它在统计分析、数据挖掘、机器学习等领域有广泛的应用。使用R语言可以帮助研究人员进行数据处理、统计分析和模型建立。 至于“压缩包子文件的文件名称列表”,这里可能存在误解或打字错误。通常,这类名称应该表示存储项目相关文件的压缩包,例如“wine_reviewer-master.zip”。这个压缩包可能包含了项目的源代码、数据集、文档和其它相关资源。在开始项目前,研究人员需要解压这个文件包,并且仔细阅读项目文档,以便了解项目的具体要求和数据格式。 总之,wine_reviewer项目是一个结合了机器学习、数据处理和葡萄酒品鉴的有趣尝试,它不仅展示了机器学习在实际生活中的应用潜力,也为研究者提供了丰富的学习资源和实践机会。通过这种跨领域的合作,可以为葡萄酒行业带来更客观、一致的评价标准,并帮助消费者做出更加明智的选择。