解释以下代码 int OPT(int total_pf) { /*最佳置换算法*/ int max, maxpage, d, dist[total_vp]; initialize(total_pf); for (int i = 0; i < total_instruction; i++) { if (pl[page[i]].pfn == INVALID) { //页面失效,不在内存中 diseffect++; if (freepf_head == NULL) { //无空闲页面 for (int j = 0; j < total_vp; j++) { if (pl[j].pfn != INVALID) { dist[j] = 32767; /* 最大"距离" */ } else { dist[j] = 0; } } d = 1; for (int j = i + 1; j < total_instruction; j++) { if (pl[page[j]].pfn != INVALID && dist[page[j]] == 32767) { dist[page[j]] = d; } d++; } max = -1; for (int j = 0; j < total_vp; j++) { if (max < dist[j]) { max = dist[j]; maxpage = j; } } freepf_head = &pfc[pl[maxpage].pfn]; freepf_head->next = NULL; pl[maxpage].pfn = INVALID; } pl[page[i]].pfn = freepf_head->pfn; freepf_head = freepf_head->next; } } printf("OPT:%6.4f\n", 1 - diseffect / 320.0); return 0; }

时间: 2024-04-07 20:28:42 浏览: 11
这段代码实现了最佳置换算法(OPT),它是一种页面置换算法,用于操作系统中的内存管理。以下是代码的详细解释: 首先,该函数初始化页面表(pl),并调用initialize函数初始化空闲页面链表(freepf_head)。 在for循环中,对于每个指令(i),如果该指令所对应的页面失效(即不在内存中),就执行以下操作: 1. diseffect++:失效页面数加一。 2. 如果没有空闲页面,就执行最佳置换算法,找到最长时间不被访问的页面,并将其移出内存。 a. 初始化一个数组dist,用于记录每个页面距离下一次被访问的时间。 b. 遍历指令序列(从i+1到总指令数),如果某个页面在这段时间内被访问了,就在dist数组中记录它的距离。 c. 找到dist数组中距离最远的页面,将其移出内存。 3. 将失效页面插入内存中空闲的页面中。 最后,该函数输出最佳置换算法的结果,即失效率(diseffect/总指令数的补数)。 总的来说,该函数实现了最佳置换算法,通过找到最长时间不被访问的页面进行页面置换,从而提高程序的执行效率。
相关问题

//1.存储管理。 #define TRUE 1 #define FALSE 0 #define INVALID -1 #define NULL 0 #define total_instruction 320 /*指令流长*/ #define total_vp 32 /*虚页长*/ #define clear_period 50 /*清0周期*/ typedef struct /*页面结构*/ { int pn; //页号 logic number int pfn; //页面框架号 physical frame number int counter; //计数器 int time; //时间 }pl_type; pl_type pl[total_vp]; /*页面线性结构---指令序列需要使用地址*/ typedef struct pfc_struct /*页面控制结构,调度算法的控制结构*/ { int pn; int pfn; struct pfc_struct *next; }pfc_type; pfc_type pfc[total_vp], *freepf_head, *busypf_head, *busypf_tail; int diseffect, a[total_instruction]; /* a[]为指令序列*/ int page[total_instruction], offset[total_instruction];/*地址信息*/ int initialize(int); int FIFO(int); int LRU(int); int LFU(int); int NUR(int); //not use recently int OPT(int); int main( ) { int s,i,j; srand(10*getpid()); /*由于每次运行时进程号不同,故可用来作为初始化随机数队列的“种子”*/ s=(float)319*rand( )/32767/32767/2+1; /*正态分布*/ for(i=0;i<total_instruction;i+=4) /*产生指令队列*/ { if(s<0||s>319) { printf("When i==%d,Error,s==%d\n",i,s); exit(0); } a[i]=s; /*任选一指令访问点m*/ a[i+1]=a[i]+1; /*顺序执行一条指令*/ a[i+2]=(float)a[i]*rand( )/32767/32767/2; /*执行前地址指令m*/ a[i+3]=a[i+2]+1; /*顺序执行一条指令*/ s=(float)(318-a[i+2])*rand( )/32767/32767/2+a[i+2]+2; if((a[i+2]>318)||(s>319)) printf("a[%d+2],a number which is :%d and s==%d\n",i,a[i+2],s); } for (i=0;i<total_instruction;i++) /*将指令序列变换成页地址流*/ { page[i]=a[i]/10; offset[i]=a[i]%10; } for(i=4;i<=32;i++) /*用户内存工作区从4个页面到32个页面*/ { printf("--%2d page frames ",i); FIFO(i); LRU(i); LFU(i); NUR(i); OPT(i); } return 0; } /*初始化相关数据结构 total_pf表示内存的块数 */ int initialize(int total_pf) { int i; diseffect=0; for(i=0;i<total_vp;i++) { pl[i].pfn=INVA

LID; /*将所有页面初始化为无效*/ pl[i].counter=0; pl[i].time=0; } for=0;i<total_pf-1;i++) /*形成空闲页面链表*/ { pfc[i].next=&pfc[i+1]; pfc[i].pn=INVALID; } pfc[total_pf-1].next=NULL; pfc[total_pf-1].pn=INVALID; freepf_head=&pfc[0]; /*初始化空闲页面头指针*/ busypf_head=NULL; /*初始化忙页面头指针*/ busypf_tail=NULL; /*初始化忙页面尾指针*/ return 0; } 这段代码是一个简单的页面置换算法的模拟程序,主要是模拟了FIFO、LRU、LFU、NUR、OPT等五种页面置换算法。其中,FIFO是按照先进先出的原则置换页面;LRU是按照最近最少使用的原则置换页面;LFU是按照最少使用次数的原则置换页面;NUR是按照最近未使用的原则置换页面;OPT是按照最优置换

/*OPT页面置换算法*/

OPT(Optimal Page Replacement)页面置换算法是一种理论上的算法,它是基于未来访问页面的情况来进行页面置换的。它的基本思想是,当需要置换页面时,选择在未来最长时间内不再被访问的页面进行置换。因此,该算法需要预测未来的页面访问情况,这使得该算法在实际应用中很难实现。以下是该算法的实现伪代码: 1. 初始化页表和计数器数组 2. 对于每个页面访问请求,执行以下步骤: a. 如果页面在页表中已经存在,将该页面的计数器加1 b. 如果页面不在页表中,执行以下步骤: i. 如果页表未满,将页面插入页表中,并将计数器初始化为该页面在未来第一次访问的时间 ii. 如果页表已满,找到计数器值最大的页面进行置换,并将该页面替换为新页面,并将计数器值设置为新页面在未来第一次访问的时间 3. 重复步骤2,直到所有页面访问请求处理完毕 需要注意的是,该算法在实际应用中很难实现,因为需要预测未来的页面访问情况。因此,在实际应用中,通常使用一些其他的页面置换算法,如LRU、FIFO等。

相关推荐

最新推荐

recommend-type

解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够问题

主要介绍了解决-BASH: /HOME/JAVA/JDK1.8.0_221/BIN/JAVA: 权限不够的问题,需要的朋友可以参考下
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

实现实时数据湖架构:Kafka与Hive集成

![实现实时数据湖架构:Kafka与Hive集成](https://img-blog.csdnimg.cn/img_convert/10eb2e6972b3b6086286fc64c0b3ee41.jpeg) # 1. 实时数据湖架构概述** 实时数据湖是一种现代数据管理架构,它允许企业以低延迟的方式收集、存储和处理大量数据。与传统数据仓库不同,实时数据湖不依赖于预先定义的模式,而是采用灵活的架构,可以处理各种数据类型和格式。这种架构为企业提供了以下优势: - **实时洞察:**实时数据湖允许企业访问最新的数据,从而做出更明智的决策。 - **数据民主化:**实时数据湖使各种利益相关者都可
recommend-type

list根据id查询pid 然后依次获取到所有的子节点数据

可以使用递归的方式来实现根据id查询pid并获取所有子节点数据。具体实现可以参考以下代码: ``` def get_children_nodes(nodes, parent_id): children = [] for node in nodes: if node['pid'] == parent_id: node['children'] = get_children_nodes(nodes, node['id']) children.append(node) return children # 测试数
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

实现实时监控告警系统:Kafka与Grafana整合

![实现实时监控告警系统:Kafka与Grafana整合](https://imgconvert.csdnimg.cn/aHR0cHM6Ly9tbWJpei5xcGljLmNuL21tYml6X2pwZy9BVldpY3ladXVDbEZpY1pLWmw2bUVaWXFUcEdLT1VDdkxRSmQxZXB5R1lxaWNlUjA2c0hFek5Qc3FyRktudFF1VDMxQVl3QTRXV2lhSWFRMEFRc0I1cW1ZOGcvNjQw?x-oss-process=image/format,png) # 1.1 Kafka集群架构 Kafka集群由多个称为代理的服务器组成,这
recommend-type

未定义标识符CFileFind

CFileFind 是MFC(Microsoft Foundation Class)中的一个类,用于在Windows文件系统中搜索文件和目录。如果你在使用CFileFind时出现了“未定义标识符”的错误,可能是因为你没有包含MFC头文件或者没有链接MFC库。你可以检查一下你的代码中是否包含了以下头文件: ```cpp #include <afx.h> ``` 另外,如果你在使用Visual Studio开发,还需要在项目属性中将“使用MFC”设置为“使用MFC的共享DLL”。这样才能正确链接MFC库。
recommend-type

c++校园超市商品信息管理系统课程设计说明书(含源代码) (2).pdf

校园超市商品信息管理系统课程设计旨在帮助学生深入理解程序设计的基础知识,同时锻炼他们的实际操作能力。通过设计和实现一个校园超市商品信息管理系统,学生掌握了如何利用计算机科学与技术知识解决实际问题的能力。在课程设计过程中,学生需要对超市商品和销售员的关系进行有效管理,使系统功能更全面、实用,从而提高用户体验和便利性。 学生在课程设计过程中展现了积极的学习态度和纪律,没有缺勤情况,演示过程流畅且作品具有很强的使用价值。设计报告完整详细,展现了对问题的深入思考和解决能力。在答辩环节中,学生能够自信地回答问题,展示出扎实的专业知识和逻辑思维能力。教师对学生的表现予以肯定,认为学生在课程设计中表现出色,值得称赞。 整个课程设计过程包括平时成绩、报告成绩和演示与答辩成绩三个部分,其中平时表现占比20%,报告成绩占比40%,演示与答辩成绩占比40%。通过这三个部分的综合评定,最终为学生总成绩提供参考。总评分以百分制计算,全面评估学生在课程设计中的各项表现,最终为学生提供综合评价和反馈意见。 通过校园超市商品信息管理系统课程设计,学生不仅提升了对程序设计基础知识的理解与应用能力,同时也增强了团队协作和沟通能力。这一过程旨在培养学生综合运用技术解决问题的能力,为其未来的专业发展打下坚实基础。学生在进行校园超市商品信息管理系统课程设计过程中,不仅获得了理论知识的提升,同时也锻炼了实践能力和创新思维,为其未来的职业发展奠定了坚实基础。 校园超市商品信息管理系统课程设计的目的在于促进学生对程序设计基础知识的深入理解与掌握,同时培养学生解决实际问题的能力。通过对系统功能和用户需求的全面考量,学生设计了一个实用、高效的校园超市商品信息管理系统,为用户提供了更便捷、更高效的管理和使用体验。 综上所述,校园超市商品信息管理系统课程设计是一项旨在提升学生综合能力和实践技能的重要教学活动。通过此次设计,学生不仅深化了对程序设计基础知识的理解,还培养了解决实际问题的能力和团队合作精神。这一过程将为学生未来的专业发展提供坚实基础,使其在实际工作中能够胜任更多挑战。