用Python实现:通过读取训练集、测试集、验证集三个文件,来构建由bp神经网络、朴素贝叶斯、extra-tree、逻辑回归构成的投票式集成学习模型
时间: 2023-12-10 19:02:25 浏览: 90
首先,需要导入所需的库:
```python
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import VotingClassifier
```
然后,读取训练集、测试集、验证集数据:
```python
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
valid_data = pd.read_csv('valid.csv')
```
接下来,对数据进行预处理,包括将标签进行编码、将特征和标签分开等:
```python
le = LabelEncoder()
train_y = le.fit_transform(train_data['label'])
train_X = train_data.drop('label', axis=1)
test_y = le.transform(test_data['label'])
test_X = test_data.drop('label', axis=1)
valid_y = le.transform(valid_data['label'])
valid_X = valid_data.drop('label', axis=1)
```
然后,构建四个模型对象:
```python
bp = MLPClassifier(hidden_layer_sizes=(100,), activation='relu', solver='adam', max_iter=500)
nb = GaussianNB()
et = ExtraTreesClassifier(n_estimators=100, random_state=42)
lr = LogisticRegression(random_state=42)
```
最后,构建投票式集成学习模型,并进行训练和预测:
```python
ensemble = VotingClassifier(estimators=[('bp', bp), ('nb', nb), ('et', et), ('lr', lr)])
ensemble.fit(train_X, train_y)
print('Accuracy on training set:', ensemble.score(train_X, train_y))
print('Accuracy on validation set:', ensemble.score(valid_X, valid_y))
print('Accuracy on test set:', ensemble.score(test_X, test_y))
```
完整代码如下:
```python
import pandas as pd
from sklearn.preprocessing import LabelEncoder
from sklearn.neural_network import MLPClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.ensemble import ExtraTreesClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.ensemble import VotingClassifier
train_data = pd.read_csv('train.csv')
test_data = pd.read_csv('test.csv')
valid_data = pd.read_csv('valid.csv')
le = LabelEncoder()
train_y = le.fit_transform(train_data['label'])
train_X = train_data.drop('label', axis=1)
test_y = le.transform(test_data['label'])
test_X = test_data.drop('label', axis=1)
valid_y = le.transform(valid_data['label'])
valid_X = valid_data.drop('label', axis=1)
bp = MLPClassifier(hidden_layer_sizes=(100,), activation='relu', solver='adam', max_iter=500)
nb = GaussianNB()
et = ExtraTreesClassifier(n_estimators=100, random_state=42)
lr = LogisticRegression(random_state=42)
ensemble = VotingClassifier(estimators=[('bp', bp), ('nb', nb), ('et', et), ('lr', lr)])
ensemble.fit(train_X, train_y)
print('Accuracy on training set:', ensemble.score(train_X, train_y))
print('Accuracy on validation set:', ensemble.score(valid_X, valid_y))
print('Accuracy on test set:', ensemble.score(test_X, test_y))
```
阅读全文