ReliefF算法Matlab实现
时间: 2023-08-06 15:03:51 浏览: 118
以下是ReliefF算法的Matlab实现代码:
```matlab
function [w, feat_idx] = ReliefF(X, y, k)
% X: 数据集矩阵,每行为一个样本,每列为一个特征
% y: 标签向量,长度与样本数目一致
% k: 近邻数目
% w: 每个特征的权重
% feat_idx: 按权重从高到低排序的特征下标
[n, d] = size(X);
w = zeros(1, d);
% 对于每个样本,计算它与最近的同类样本和异类样本的距离
for i = 1:n
dist = sum((X - ones(n, 1)*X(i,:)).^2, 2);
[~, idx] = sort(dist);
near_hit = idx(2:k+1);
near_miss = find(y ~= y(i));
near_miss = near_miss(randperm(length(near_miss), min(k, length(near_miss))));
% 更新特征权重
for j = 1:d
w(j) = w(j) - abs(X(i,j)-X(near_hit,j))*sum(y(near_hit)==y(i))/k;
w(j) = w(j) + abs(X(i,j)-X(near_miss,j))*sum(y(near_miss)~=y(i))/k;
end
end
% 按权重从高到低排序特征
[~, feat_idx] = sort(w, 'descend');
end
```
请注意,此代码实现仅适用于二元分类问题。对于多类别分类问题,需要修改代码以处理多个类别。此外,此实现假定特征值是数值类型。如果特征是分类变量,则需要将其转换为二进制变量。
阅读全文
相关推荐
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![zip](https://img-home.csdnimg.cn/images/20241231045053.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![](https://csdnimg.cn/download_wenku/file_type_ask_c1.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![rar](https://img-home.csdnimg.cn/images/20241231044955.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)
![-](https://img-home.csdnimg.cn/images/20241231045053.png)