vision transformer的class token的作用是什么
时间: 2023-11-24 11:07:29 浏览: 410
Vision Transformer (ViT) 是一种使用自注意力机制(Self-Attention Mechanism)的深度神经网络模型,用于图像分类任务。在 ViT 模型中,Class Token 是一个额外的向量,它被添加到图像的嵌入表示中,然后传递给 Transformer 中的最后一个注意力层。Class Token 的作用是为模型提供一个全局信息的汇总,它捕获了整个图像的语义信息,这有助于模型更好地理解整个图像,并更准确地分类图像。因此,Class Token 是在 ViT 模型中非常重要的组成部分之一。
相关问题
transformer中token
### Transformer 模型中的 Token 处理方式及作用
#### 输入序列构建
在 Transformer 模型中,Token 是基本的输入单元。对于文本数据而言,每个单词或子词会被转换成一个唯一的 ID 或嵌入向量形式的 Token[^1]。
#### 特殊 Tokens 的引入
为了特定目的,一些特殊的 Tokens 也会被添加到输入序列当中。例如,在 BERT (Bidirectional Encoder Representations from Transformers) 中使用的 `[CLS]` 和 `[SEP]` Tokens。其中 `[CLS]` 表示分类任务所需的特殊标记;而 `[SEP]` 则用于区分不同的句子片段[^3]。
#### Class Token 在 Vision Transformer 中的应用
特别地,在视觉任务上的 ViT (Vision Transformer) 架构里,除了常规来自图片切片得到的 patch tokens 外还会额外附加一个 class token。这个 class token 同样参与整个 Transformer 编码过程,并最终仅以其对应的输出部分来进行类别预测工作[^4]。
#### 计算资源影响
当在一个已经存在的输入序列基础上再增添新的 Token 时——无论是普通的还是像上述提到过的那些具有专门用途的——都会使得整体计算负担有所上升。这是因为更多的 Tokens 导致了更大的矩阵运算规模以及更复杂的多头自注意机制运作需求,从而增加了每一步迭代所需的时间开销和硬件资源占用情况。
```python
import torch
from transformers import BertTokenizer, BertModel
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained('bert-base-uncased')
text = "Using a Transformer network is simple."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
print(output.last_hidden_state.shape)
```
vision transformer实战
vision transformer是一种基于self-attention机制的图像分类算法。它采用了transformer的框架,将输入的图像通过一系列的transformer模块,最终输出分类结果。下面是一个简单的vision transformer实战流程:
1. 导入必要的库和数据集
```
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torchvision.datasets import CIFAR10
from torchvision import transforms
transform = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])
train_dataset = CIFAR10(root='./data', train=True, transform=transform, download=True)
test_dataset = CIFAR10(root='./data', train=False, transform=transform, download=True)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)
```
2. 定义vision transformer模型
```
class VisionTransformer(nn.Module):
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=10, embed_dim=768, depth=12,
num_heads=12, mlp_ratio=4.0):
super(VisionTransformer, self).__init__()
self.patch_size = patch_size
self.num_patches = (img_size // patch_size) ** 2
self.patch_embed = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, self.num_patches + 1, embed_dim))
self.pos_drop = nn.Dropout(p=0.5)
self.transformer = nn.TransformerEncoder(
nn.TransformerEncoderLayer(d_model=embed_dim, nhead=num_heads, dim_feedforward=int(embed_dim * mlp_ratio)),
num_layers=depth)
self.norm = nn.LayerNorm(embed_dim)
self.fc = nn.Linear(embed_dim, num_classes)
def forward(self, x):
B = x.size(0)
x = self.patch_embed(x).flatten(2).transpose(1, 2)
cls_tokens = self.cls_token.expand(B, -1, -1)
x = torch.cat((cls_tokens, x), dim=1)
x += self.pos_embed[:, :(self.num_patches + 1)]
x = self.pos_drop(x)
x = self.transformer(x)
x = self.norm(x)
cls_tokens = x[:, 0]
x = self.fc(cls_tokens)
return x
```
3. 定义损失函数和优化器
```
model = VisionTransformer(num_classes=10).cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
```
4. 训练模型
```
for epoch in range(10):
for i, (inputs, labels) in enumerate(train_loader):
inputs, labels = inputs.cuda(), labels.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
if epoch % 2 == 0:
print('Epoch [{}/{}], Loss: {:.4f}'
.format(epoch+1, 10, loss.item()))
```
5. 测试模型
```
with torch.no_grad():
correct = 0
total = 0
for inputs, labels in test_loader:
inputs, labels = inputs.cuda(), labels.cuda()
outputs = model(inputs)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (
100 * correct / total))
```
阅读全文